
CHAPTER 6

Proof by Contradiction

We now explore a third method of proof: proof by contradiction.
This new method is not limited to proving just conditional state-

ments – it can be used to prove any kind of statement whatsoever. The
basic idea is to assume that the statement we want to prove is false, and
then show that this assumption leads to nonsense. We are then led to
conclude that we were wrong to assume the statement was false, so the
statement must be true. As an example, consider the following proposition
and its proof.
Proposition If a,b ∈Z, then a2 −4b 6= 2.

Proof. Suppose this proposition is false.
This conditional statement being false means there exist numbers a and b
for which a,b ∈Z is true but a2 −4b 6= 2 is false.
Thus there exist integers a,b ∈Z for which a2 −4b = 2.
From this equation we get a2 = 4b+2= 2(2b+1), so a2 is even.
Since a2 is even, it follows that a is even, so a = 2c for some integer c.
Now plug a = 2c back into the boxed equation a2 −4b = 2.
We get (2c)2 −4b = 2, so 4c2 −4b = 2. Dividing by 2, we get 2c2 −2b = 1.
Therefore 1= 2(c2 −b), and since c2 −b ∈Z, it follows that 1 is even.
Since we know 1 is not even, something went wrong.
But all the logic after the first line of the proof is correct, so it must be
that the first line was incorrect. In other words, we were wrong to assume
the proposition was false. Thus the proposition is true. ■

You may be a bit suspicious of this line of reasoning, but in the next
section we will see that it is logically sound. For now, notice that at
the end of the proof we deduced that 1 is even, which conflicts with our
knowledge that 1 is odd. In essence, we have obtained the statement
(1 is odd)∧∼ (1 is odd), which has the form C∧∼ C. Notice that no matter
what statement C is, and whether or not it is true, the statement C∧∼ C
must be false. A statement—like this one—that cannot be true is called a
contradiction. Contradictions play a key role in our new technique.
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6.1 Proving Statements with Contradiction
Let’s now see why the proof on the previous page is logically valid. In
that proof we needed to show that a statement P : (a,b ∈Z)⇒ (a2 −4b 6= 2)
was true. The proof began with the assumption that P was false, that is
that ∼ P was true, and from this we deduced C∧∼ C. In other words we
proved that ∼ P being true forces C∧∼ C to be true, and this means that
we proved that the conditional statement (∼ P)⇒ (C ∧∼ C) is true. To see
that this is the same as proving P is true, look at the following truth table
for (∼ P) ⇒ (C ∧∼ C). Notice that the columns for P and (∼ P) ⇒ (C ∧∼ C)
are exactly the same, so P is logically equivalent to (∼ P)⇒ (C ∧∼ C).

P C ∼ P C ∧∼ C (∼ P)⇒ (C ∧∼ C)

T T F F T

T F F F T

F T T F F

F F T F F

Therefore to prove a statement P, it suffices to instead prove the conditional
statement (∼ P)⇒ (C ∧∼ C). This can be done with direct proof: Assume
∼ P and deduce C ∧∼ C. Here is the outline.

Outline for Proof by Contradiction.

Proposition P.

Proof. Suppose ∼ P.
...

Therefore C ∧∼ C. ■
One slightly unsettling feature of this method is that we may not know

at the beginning of the proof what the statement C is going to be. In
doing the scratch work for the proof, you assume that ∼ P is true, then
deduce new statements until you have deduced some statement C and its
negation ∼ C.

If this method seems confusing, look at it this way. In the first line of
the proof we suppose ∼ P is true, that is we assume P is false. But if P is
really true then this contradicts our assumption that P is false. But we
haven’t yet proved P to be true, so the contradiction is not obvious. We
use logic and reasoning to transform the non-obvious contradiction P∧∼ P
to an obvious contradiction C∧∼ C.
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The idea of proof by contradiction is quite ancient, and goes back at
least as far as the Pythagoreans, who used it to prove that certain numbers
are irrational. Our next example follows their logic to prove that

p
2 is

irrational. Recall that a number is rational if it equals a fraction of two
integers, and it is irrational if it cannot be expressed as a fraction of two
integers. Here is the exact definition.
Definition 6.1 A real number x is rational if x = a

b , for some a,b ∈ Z.
The number x is irrational if it is not rational, that is if x 6= a

b for every
a,b ∈Z.

We are now ready to use contradiction to prove that
p

2 is irrational.
According to the outline, the first line of the proof should be “Suppose that
it is not true that

p
2 is irrational." But in writing the proof, it is helpful

(though not mandatory) to tip our reader off to the fact that we are using
proof by contradiction. One standard way of doing this is to make the first
line “Suppose for the sake of contradiction that it is not true that

p
2 is

irrational."
Proposition The number

p
2 is irrational.

Proof. Suppose for the sake of contradiction that it is not true that
p

2 is
irrational. Then

p
2 is rational, so there are integers a and b for which

p
2= a

b
. (6.1)

Let this fraction be fully reduced; in particular, this means that a and b are
not both even. (If they were both even, the fraction could be further reduced
by factoring 2’s from the numerator and denominator and canceling.)
Squaring both sides of Equation 6.1 gives 2= a2

b2 , and therefore

a2 = 2b2. (6.2)

From this it follows that a2 is even. But we proved earlier (Exercise 5.1)
that a2 being even implies a is even. Thus, as we know that a and b are
not both even, it follows that b is odd. Now, since a is even there is an
integer c for which a = 2c. Plugging this value for a into Equation 6.2, we
get (2c)2 = 2b2, so 4c2 = 2b2, and hence b2 = 2c2. This means b2 is even, so
b is even also. But previously we deduced that b is odd. Thus we have the
contradiction b is even and b is odd. ■

To appreciate the power of proof by contradiction, imagine trying to
prove that

p
2 is irrational without it. Where would we begin? What would
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be our initial assumption? There are no clear answers to these questions.
Proof by contradiction gives us a starting point: assume

p
2 is rational,

and work from there.
In the above proof we got the contradiction (b is even) ∧∼(b is even)

which has the form C∧ ∼ C. In general, your contradiction need not
necessarily be of this form. Any statement that is clearly false is sufficient.
For example 2 6= 2 would be a fine contradiction, as would be 4 |2, provided
that you could deduce them.

Here is another ancient example, dating back at least as far as Euclid.
Proposition There are infinitely many prime numbers.

Proof. For the sake of contradiction, suppose there are only finitely many
prime numbers. Then we can list all the prime numbers as p1, p2, p3, . . . pn,
where p1 = 2, p2 = 3, p3 = 5, p4 = 7, and so on. Thus pn is the nth and largest
prime number. Now consider the number a = (p1 p2 p3 · · · pn)+1, that is, a is
the product of all prime numbers, plus 1. Now a, like any natural number,
has at least one prime divisor, and that means pk |a for at least one of our
n prime numbers pk. Thus there is an integer c for which a = cpk, which
is to say

(p1 p2 p3 · · · pk−1 pk pk+1 · · · pn)+1= cpk.

Dividing both sides of this by pk gives us

(p1 p2 p3 · · · pk−1 pk+1 · · · pn)+ 1
pk

= c,

so
1
pk

= c− (p1 p2 p3 · · · pk−1 pk+1 · · · pn).

The expression on the right is an integer, while the expression on the left
is not an integer. Thus we have an integer that equals a non-integer value,
a contradiction. ■

Proof by contradiction often works well in proving statements of the
form ∀x,P(x). The reason is that the proof set-up involves assuming
∼∀x,P(x), which as we know from Section 2.10 is equivalent to ∃x,∼ P(x).
This gives us a specific x for which ∼ P(x) is true, and often that is enough
to produce a contradiction. Here is an example.
Proposition For every real number x ∈ [0,π/2], we have sin x+cos x ≥ 1.

Proof. Suppose for the sake of contradiction that this is not true.
Then there exists an x ∈ [0,π/2] for which sin x+cos x < 1.
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Since x ∈ [0,π/2], neither sin x nor cos x is negative, so 0≤ sin x+cos x < 1.
Thus 02 ≤ (sin x+cos x)2 < 12, which gives 02 ≤ sin2 x+2sin xcos x+cos2 x < 12.
As sin2 x+cos2 x = 1, this becomes 0≤ 1+2sin xcos x < 1, so 1+2sin xcos x < 1.
Subtracting 1 from both sides gives 2sin xcos x < 0.
But this contradicts the fact that neither sin x nor cos x is negative. ■

6.2 Proving Conditional Statements by Contradiction
Since the previous two chapters dealt exclusively with proving conditional
statements, we now formalize the procedure in which contradiction is used
to prove a conditional statement. Suppose we want to prove a proposition
of the following form.

Proposition If P, then Q.

Thus we need to prove that P ⇒ Q is a true statement. Proof by
contradiction begins with the assumption that ∼ (P ⇒ Q) it true, that is
that P ⇒Q is false. But we know that P ⇒Q being false means that P is
true and Q is false. Thus the first step in the proof it to assume P and
∼Q. Here is an outline.

Outline for Proving a Conditional
Statement with Contradiction.

Proposition If P, then Q.

Proof. Suppose P and ∼Q.
...

Therefore C ∧∼ C. ■

To illustrate this new technique, we revisit a familiar result: If a2 is
even, then a is even. According to the outline, the first line of the proof
should be “Suppose for the sake of contradiction that a2 is even and a is
not even."

Proposition Suppose a ∈Z. If a2 is even, then a is even.

Proof. For the sake of contradiction suppose a2 is even and a is not even.
Then a2 is even, and a is odd.
Since a is odd, there is an integer c for which a = 2c+1.
Then a2 = (2c+1)2 = 4c2 +4c+1= 2(2c2 +2c)+1, so a2 is odd.
Thus a2 is even and a2 is not even, a contradiction. ■
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Here is another example.

Proposition If a,b ∈Z and a ≥ 2, then a - b or a - (b+1).

Proof. Suppose for the sake of contradiction there exist a,b ∈Z with a ≥ 2,
and for which it is not true that a - b or a - (b+1).
By DeMorgan’s Law, we have a | b and a | (b+1).
The definition of divisibility says there are c,d ∈Z with b = ac and b+1= ad.
Subtracting one equation from the other gives ad−ac = 1, so a(d− c)= 1.
Since a is positive, d−c is also positive (otherwise a(d−c) would be negative).
Then d− c is a positive integer and a(d− c)= 1, so a = 1/(d− c)< 2.
Thus we have a ≥ 2 and a < 2, a contradiction. ■

6.3 Combining Techniques
Often, especially in more complex proofs, several proof techniques are
combined within a single proof. For example, in proving a conditional
statement P ⇒Q, we might begin with direct proof and thus assume P to
be true with the aim of ultimately showing Q is true. But the truth of
Q might hinge on the truth of some other statement R which—together
with P—would imply Q. We would then need to prove R, and we would
use whichever proof technique seems most appropriate. This can lead to
“proofs inside of proofs." Consider the following result. The overall approach
is direct, but inside the direct proof is a separate proof by contradiction.

Proposition Every nonzero rational number can be expressed as a
product of two irrational numbers.

Proof. This proposition can be reworded as follows: If r is a nonzero
rational number, then r is a product of two irrational numbers. In what
follows, we prove this with direct proof.

Suppose r is a nonzero rational number. Then r = a
b for integers a and

b. Also, r can be written as a product of two numbers as follows.

r =
p

2 · rp
2

.

We know
p

2 is irrational, so to complete the proof we must show r/
p

2 is
also irrational.

To show this, assume for the sake of contradiction that r/
p

2 is rational.
This means

rp
2
= c

d
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for integers c and d, so p
2= r

d
c

.

But we know r = a/b, which combines with the above equation to give

p
2= r

d
c
= a

b
d
c
= ad

bc
.

This means
p

2 is rational, which is a contradiction because we know it is
irrational. Therefore r/

p
2 is irrational.

Consequently r =p
2 · r/

p
2 is a product of two irrational numbers. ■

For another example of a proof-within-a-proof, try Exercise 5 of this
chapter and then check its solution. That exercise asks you to prove thatp

3 is irrational. This turns out to be slightly trickier than proving thatp
2 is irrational.

6.4 Some Words of Advice
Despite the power of proof by contradiction, it’s best to use it only when the
direct and contrapositive approaches do not seem to work. The reason for
this is that a proof by contradiction can often have hidden in it a simpler
contrapositive proof, and if this is the case it’s better to go with the simpler
approach. Consider the following example.
Proposition Suppose a ∈Z. If a2 −2a+7 is even, then a is odd.

Proof. To the contrary, suppose a2 −2a+7 is even and a is not odd.
That is, suppose a2 −2a+7 is even and a is even.
Since a is even, there is an integer c for which a = 2c.
Then a2 −2a+7= (2c)2 −2(2c)+7= 2(2c2 −2c+3)+1, so a2 −2a+7 is odd.
Thus a2 −2a+7 is both even and odd, a contradiction. ■

Though there is nothing really wrong with this proof, notice that part
of it assumes a is not odd and deduces that a2 −2a+7 is not even. That is
the contrapositive approach! Thus it would be more efficient to proceed as
follows, using contrapositive proof.
Proposition Suppose a ∈Z. If a2 −2a+7 is even, then a is odd.

Proof. (Contrapositive) Suppose a is not odd.
Then a is even, so there is an integer c for which a = 2c.
Then a2 −2a+7= (2c)2 −2(2c)+7= 2(2c2 −2c+3)+1, so a2 −2a+7 is odd.
Thus a2 −2a+7 is not even. ■
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Exercises for Chapter 6

A. Use the method of proof by contradiction to prove the following statements.
(In each case you should also think about how a direct or contrapositive proof
would work. You will find in most cases that proof by contradiction is easier.)

1. Suppose n ∈Z. If n is odd, then n2 is odd.
2. Suppose n ∈Z. If n2 is odd, then n is odd.
3. Prove that 3p2 is irrational.
4. Prove that

p
6 is irrational.

5. Prove that
p

3 is irrational.
6. If a,b ∈Z, then a2 −4b−2 6= 0.
7. If a,b ∈Z, then a2 −4b−3 6= 0.
8. Suppose a,b, c ∈Z. If a2 +b2 = c2, then a or b is even.
9. Suppose a,b ∈R. If a is rational and ab is irrational, then b is irrational.
10. There exist no integers a and b for which 21a+30b = 1.
11. There exist no integers a and b for which 18a+6b = 1.
12. For every positive rational number x, there is a positive rational number y

for which y< x.
13. For every x ∈ [π/2,π], sin x−cos x ≥ 1.
14. If A and B are sets, then A∩ (B− A)=;.
15. If b ∈Z and b - k for every k ∈N, then b = 0.
16. If a and b are positive real numbers, then a+b ≥ 2

p
ab.

17. For every n ∈Z, 4 6 | (n2 +2).
18. Suppose a,b ∈Z. If 4 |(a2 +b2), then a and b are not both odd.

B. Prove the following statements using any method from chapters 4, 5 or 6.

19. The product of any five consecutive integers is divisible by 120. (For
example, the product of 3,4,5,6 and 7 is 2520, and 2520= 120 ·21.)

20. We say that a point P = (x, y) in R2 is rational if both x and y are rational.
More precisely, P is rational if P = (x, y) ∈Q2. An equation F(x, y)= 0 is said
to have a rational point if there exists x0, y0 ∈Q such that F(x0, y0)= 0. For
example, the curve x2 + y2 −1= 0 has rational point (x0, y0)= (1,0). Show that
the curve x2 + y2 −3= 0 has no rational points.

21. Exercise 20 involved showing that there are no rational points on the curve
x2 + y2 −3= 0. Use this fact to show that

p
3 is irrational.

22. Explain why x2 + y2 −3= 0 not having any rational solutions (Exercise 20)
implies x2+ y2−3k = 0 has no rational solutions for k an odd, positive integer.

23. Use the above result to prove that
√

3k is irrational for all odd, positive k.

24. The number log2 3 is irrational.


