CS 130 Homework 1

Alex Vondrak

Fall 2011

The following problems are taken from exercises at the end of Section 1.1 of Gersting, 6e.

[1] (Exercise 2) Given the truth values A true, B false, and C true, what is the truth value of each of the following WFFs?

- a. $A \wedge (B \vee C)$
- b. $(A \wedge B) \lor C$
- c. $(A \wedge B)' \vee C$
- d. $A' \vee (B' \wedge C)'$
- 2 (Exercise 5) Several forms of negation are given for each of the following statements. Which are correct?
 - a. The answer is either 2 or 3.
 - 1. Neither 2 nor 3 is the answer.
 - 2. The answer is not 2 or not 3.
 - 3. The answer is not 2 and it is not 3.
 - b. Cucumbers are green and seedy.
 - 1. Cucumbers are not green and not seedy.
 - 2. Cucumbers are not green or not seedy.
 - 3. Cucumbers are green and not seedy.
 - c. 2 < 7 and 3 is odd.
 - 1. 2 > 7 and 3 is even.
 - 2. $2 \ge 7$ and 3 is even.
 - 3. $2 \ge 7$ or 3 is odd.
 - 4. $2 \ge 7$ or 3 is even.

3 (Exercise 9) Let A, B, and C be the following statements:

A = Roses are red. B = Violets are blue. C = Sugar is sweet.

Translate the following compound statements into symbolic notation.

- a. Roses are red and violets are blue.
- b. Roses are red, and either violets are blue or sugar is sweet.
- c. Whenever violets are blue, roses are red and sugar is sweet.
- d. Roses are red only if violets aren't blue or sugar is sour.
- e. Roses are red and, if sugar is sour, then either violets aren't blue or sugar is sweet.

4 (Exercise 17) Construct truth tables for the following WFFs. Note any tautologies or contradictions.

- a. $(A \rightarrow B) \leftrightarrow A' \lor B$
- b. $(A \land B) \lor C \to A \land (B \lor C)$
- c. $A \wedge (A' \vee B')'$
- d. $A \wedge B \to A'$
- e. $(A \rightarrow B) \rightarrow ((A \lor C) \rightarrow (B \lor C))$
- f. $A \rightarrow (B \rightarrow A)$
- g. $A \wedge B \leftrightarrow B' \vee A'$
- h. $(A \lor B') \land (A \land B)'$
- i. $((A \lor B) \land C') \rightarrow A' \lor C$
- 5 (Exercise 27) Rewrite the following statement form with a simplified conditional expression, where the function odd(n) returns true if n is odd.

6 (Exercise 32) Every compound statement is equivalent to a statement using only the connectives of conjunction and negation. To see this, we need to find equivalent WFFs for $A \vee B$ and for $A \to B$ using only \wedge and '. These new statements can replace, respectively, any occurrences of $A \vee B$ and $A \to B$. (The connective \leftrightarrow was defined in terms of other connectives, so we already know that it can be replaced by a statement using these other connectives.)

- a. Show that $A \vee B$ is equivalent to $(A' \wedge B')'$.
- b. Show that $A \to B$ is equivalent to $(A \land B')'$.

7 (Exercise 36) The binary connective \downarrow is defined by the following truth table:

А	В	$A \downarrow B$
F	F	Т
F	Т	F
Т	F	F
Т	Т	F

Show that every compound statement is equivalent to a statement using only the connective \downarrow . (*Hint:* Use $\boxed{6}$ and find equivalent statements for $A \land B$ and A' in terms of \downarrow .)