CS 130 Homework 6

Alex Vondrak

Fall 2011

The following problems are taken from exercises at the end of Section 3.1 and Section 4.1 of Gersting, 6e.

1 (Section 3.1, Exercise 13) Let

 $\mathsf{A} = \{ \mathfrak{a}, \ \{ \mathfrak{a} \}, \ \{ \{ \mathfrak{a} \} \} \} \qquad \mathsf{B} = \{ \mathfrak{a} \} \qquad \mathsf{C} = \{ \varnothing, \ \{ \mathfrak{a}, \{ \mathfrak{a} \} \} \}$

Which of the following are true? For those that are not, where do they fail?

a. $B \subseteq A$	d. $\varnothing \subseteq C$	g. $\{a, \{a\}\} \subseteq A$
b. $B \in A$	e. $\varnothing \in C$	h. B \subseteq C
c. $C \subseteq A$	f. $\{a, \{a\}\} \in A$	i. $\{\{a\}\} \subseteq A$

2 (Section 3.1, Exercise 24) Find $\wp(S)$ for $S = \{\varnothing\}$.

|3| (Section 3.1, Exercise 40) Let

$$A = \{a, \{a\}, \{\{a\}\}\}$$
$$B = \{\emptyset, \{a\}, \{a, \{a\}\}\}$$
$$C = \{a\}$$

be subsets of $U = \{ \varnothing, a, \{a\}, \{\{a\}\}, \{a, \{a\}\} \}$. Find

a. $A \cap C$	d. $\varnothing \cap B$	g. $\{\emptyset\} \cap B$
b. $B \cap C'$	e. $(B \cup C) \cap A$	
c. $A \cup B$	f. $A' \cap B$	

4 (Section 3.1, Exercise 53) Prove that

 $(A \cap B) \subseteq A$

where A and B are arbitrary sets.

5 (Section 4.1, Exercise 10) Let $S = \{0, 1, 2, 4, 6\}$. Test the following binary relations on S for reflexivity, symmetry, antisymmetry, and transitivity.

a. $\rho = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}$ b. $\rho = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$ c. $\rho = \{(0,1), (1,2), (0,2), (2,0), (2,1), (1,0), (0,0), (1,1), (2,2)\}$ d. $\rho = \{(0,0), (1,1), (2,2), (4,4), (6,6), (4,6), (6,4)\}$ e. $\rho = \emptyset$

6 (Section 4.1, Exercise 19) Two additional properties of a binary relation ρ are defined as follows:

 $\begin{array}{l} \rho \text{ is irreflexive means } (\forall x \in S)[(x,x) \notin \rho] \\ \rho \text{ is asymmetric means } (\forall x,y \in S)[(x,y) \in \rho \rightarrow (y,x) \notin \rho] \end{array}$

- a. Give an example of a binary relation ρ on set $S = \{1, 2, 3\}$ that is neither reflexive nor irreflexive.
- b. Give an example of a binary relation ρ on set $S = \{1, 2, 3\}$ that is neither symmetric nor asymmetric.
- c. Prove that if ρ is an asymmetric relation on a set S, then ρ is irreflexive.
- d. Prove that if ρ is an irreflexive and transitive relation on a set S, then ρ is asymmetric.
- e. Prove that if ρ is a nonempty, symmetric, and transitive relation on a set S, then ρ is not irreflexive.

 $\mathbf{2}$