
Computer Science 130

Discrete Structures

Fall 2011 Lecture Notes

Alex Vondrak

December 2, 2011

1 Formal Logic

1.1 Boolean Logic

A statement (or proposition) is a sentence which is either true or false. They
can be represented abstractly using variables. E.g.,

Baseballs are round . . . is true
Baseballs are square . . . is false
The sky is blue . . . is true
The Earth is the center of the universe . . . is false

We can form statements from other statements using Boolean (or propositional)
operators:

• Conjunction (“and”)

• Disjunction (“or”)

• Negation (“not”)

• Implication (“if. . . then. . . ”)

• Equivalence (“if and only if”)

Conjunction (“and”)

A B A∧ B

F F F

F T F

T F F

T T T

truth table

conjuncts

E.g.,
Baseballs are round and the sky is blue . . . is true

1

Disjunction (“or”)

A B A∨ B

F F F

F T T

T F T

T T T

truth table

disjuncts

E.g.,
Baseballs are square or baseballs are round . . . is true

Negation (“not”)

A A ′

F T

T F

truth table

E.g.,
The Earth is not the center of the universe . . . is true

Note: negation is a unary operator, whereas the other propositional operator
we consider are binary operators.

Implication (“if. . . then. . . ”)

A B A→ B

F F T

F T T

T F F

T T T

truth table

antecedent consequent

A→ B can be stated many ways in English:

• “If A, then B”

• “A implies B”

• “A only if B”

• “B if A”

• “A is a sufficient condition for B”

• “B is a necessary condition for A”

2

Equivalence (“if and only if”)

A B A↔ B

F F T

F T F

T F F

T T T

truth table

A (propositional) well-formed formula (WFF) is

1. A statement variable (e.g., A,B,C, . . .)

or 2. An expression with the form

(f1 ∧ f2)

or (f1 ∨ f2)

or (f ′)

or (f1 → f2)

or (f1 ↔ f2)

where f, f1, f2 are WFFs.

E.g.,

• A

• (A→ B)

• (((A ′)∨ B)↔ (A→ B))

The value of a variable must be assigned. The value of a compound WFF is
determined by applying the Boolean operator to the values of its component
WFFs.

Matching parentheses may be omitted, in which case the order of several oper-
ations within the same parentheses is determined by precedence:

Boolean Operator Precedence

Negation (′)

Conjunction (∧)

Disjunction (∨)

Implication (→)

Equivalence (↔)

high precedence (apply first)

low precedence (apply last)

3

Operators of equal precedence are applied left-to-right (i.e., they are left asso-
ciative).

E.g.,

A∨ B ′ has the same value as (A∨ (B ′))

A→ B∨ C has the same value as (A→ (B∨ C))

A∧ B∨ C→ D ′ has the same value as
((

(A∧ B)∨ C
)→ (D ′)

)
A truth table evaluates a WFF for every possible truth assignment of values to
its variables.

E.g.,

A B A→ B A ′ ∨ B (A→ B)↔ (A ′ ∨ B)
F F T T T

F T T T T

T F F F T

T T T T T

A B (A∨ B) ′ A ′ ∧ B ′ (A∨ B) ′ ↔ A ′ ∧ B ′

F F T T T

F T F F T

T F F F T

T T F F T

A WFF is a tautology if its value is true for every truth assignment.

A WFF is a contradiction if its value is false for every truth assignment.

E.g.,

(A→ B)↔ (A ′ ∨ B) is a tautology

(A∨ B) ′ ↔ A ′ ∧ B ′ is a tautology

A∧A ′ is a contradiction

WFFs P and Q are equivalent, denoted P ⇔ Q, if P ↔ Q is a tautology.

4

Common Equivalences

Equivalence Dual

1. A∨ B⇔ B∨A A∧ B⇔ B∧A
2. (A∨ B)∨ C⇔ A∨ (B∨ C) (A∧ B)∧ C⇔ A∧ (B∧ C)
3. A∨ (B∧ C)⇔ (A∨ B)∧ (A∨ C) A∧ (B∨ C)⇔ (A∧ B)∨ (A∧ C)
4. A∨ F⇔ A A∧ T⇔ A
5. A∨A ′ ⇔ T A∧A ′ ⇔ F

6. (A∨ B) ′ ⇔ A ′ ∧ B ′ (A∧ B) ′ ⇔ A ′ ∨ B ′

7. A∨A⇔ A A∧A⇔ A
8. A→ B⇔ A ′ ∨ B
9. A→ B⇔ B ′ → A ′

10. A→ (B→ C)⇔ (A∧ B)→ C

The dual of a WFF having operators ∧, ∨, ′ is obtained by interchanging ∧/∨
and T/F. In general, the duals of equivalent WFFs are equivalent.

These equivalences are named properties:

1. Commutativity comm

2. Associativity ass

3. Distributivity dist

4. Identity

5. Complement

6. De Morgan’s Law deMorgan

7. Idempotence idem

8. Implication Rewriting imp

9. Contraposition contr

10. Conditional Proof, a.k.a. Exportation exp

1.2 Propositional Logic

One way to show a propositional WFF is a tautology is by using a truth table.
However, the size of a truth table grows exponentially, and they don’t reflect
any actual reasoning.

Another method is to make a proof using deduction in a proof system.

5

Proof System

An axiom is a WFF which is true and is accepted without proof.

An inference rule is a method for deducing a WFF from other WFFs.

A proof is a sequence of WFFs in which each WFF is an axiom or
is deduced from preceding WFFs by an inference rule.

A theorem is the last WFF in a proof.

A system of natural deduction consists of as many intuitively valid inference
rules as possible, to reflect the way we “naturally” reason. Such rules include:

Modus Ponens: Q can be deduced from P, P → Q. mp

Modus Tollens: P ′ can be deduced from Q ′, P → Q. mt

Hypothetical Syllogism: P → R can be deduced from P → Q, Q→ R. hs

Dilemma: Q∨ S can be deduced from P → Q, R→ S, P ∨ R. dil

Conjunction: P ∧Q can be deduced from P, Q. conj

Simplification: P can be deduced from P ∧Q. simp

Q can be deduced from P ∧Q.

Addition: P ∨Q can be deduced from P. add

P ∨Q can be deduced from Q.

Disjunctive Syllogism: Q can be deduced from P ∨Q, P ′. ds

P can be deduced from P ∨Q, Q ′.

Further rules may apply that aren’t strictly inference rules. Inference rules de-
duce a new conclusion from existing WFFs. However, rewrite rules are equiv-
alences that let you rewrite the series of symbols that make up some WFF.
E.g.,

Double Negation: (P ′) ′ is the same as P. dn

Material Equivalence: A↔ B is the same as (A→ B)∧ (B→ A). equiv

Etc.: Any other known equivalence (e.g., from the list on page 5).

In contrast to natural proof systems, axiomatic proof systems are minimalist:
they aim to have a small number of axioms and inference rules from which we
then build up proofs of more intuitive notions. That is, we take as little for
granted as we can. By considering as few things “intuitively true” as possible,
it makes us more certain that resulting proofs are correct, since they rely on
fewer assumptions.

6

We will use the following axiomatic proof system, called propositional logic:

Axioms:

1. P → (Q→ P)

2. (P → (Q→ R))→ ((P → Q)→ (P → R))

3. (Q ′ → P ′)→ (P → Q) contr

Inference Rule: Q can be deduced from P, P → Q. mp

Example Proof of theorem A→ A

1. (

P︷︸︸︷
A → (

Q︷ ︸︸ ︷
(A→ A)→ R︷︸︸︷

A))→
((A︸︷︷︸

P

→ (A→ A)︸ ︷︷ ︸
Q

)→ (A︸︷︷︸
P

→ A︸︷︷︸
R

)) Axiom 2

2.

P︷︸︸︷
A → (

Q︷ ︸︸ ︷
(A→ A)→ P︷︸︸︷

A) Axiom 1

3. (A→ (A→ A))→ (A→ A) 1, 2, mp

4. A→ (A→ A) Axiom 1

5. A→ A 3, 4, mp

A proof system is sound if every theorem which can be proved is a tautology.

A proof system is complete if every tautology is a theorem which can be proved.

Propositional logic is sound and complete, although showing that is beyond the
scope of this course.

Generalized Methods of Deduction

• To prove P1 ∧ P2 ∧ . . . ∧ Pn → Q, write P1, P2, . . . , Pn in your proof as
hypotheses, then deduce Q as a conclusion.

• To prove P1 ∧ P2 ∧ . . .∧ Pn → (R → S), write P1, P2, . . . , Pn, R in your
proof as hypotheses, then deduce S as a conclusion.

• P1 ∧ P2 ∧ . . .∧ Pn can be deduced from P1, P2, . . . , Pn. conj

• P with R subsituted for S can be deduced from P, R↔ S

7

Example Prove (P ′ → Q ′)∧ (P → S)→ (Q→ S)

1. P ′ → Q ′ hyp

2. P → S hyp

3. Q hyp

4. (P ′ → Q ′)→ (Q→ P) Axiom 3

5. Q→ P 1, 4, mp

6. P 3, 5, mp

7. S 2, 6, mp

Example Prove (I→ H)∧ (F∨H ′)∧ I→ F

1. I→ H hyp

2. F∨H ′ hyp

3. I hyp

4. H 1, 3, mp

5. H ′ ∨ F 2, comm

6. H→ F 5, imp

7. F 4, 6, mp

Known tautologies can be used without proof

1.3, 1.4 Predicate Logic

A predicate well-formed formula (predicate WFF) is

1. P(x1, x2, . . . , xn), where x1, x2, . . . , xn are constants or variables and P is
a predicate

or 2.

(f1 ∧ f2)

or (f1 ∨ f2)

or (f ′)

or (f1 → f2)

or (f1 ↔ f2)

where f, f1, f2 are WFFs.

8

or 3. A quantified formula—i.e., either

(∀x)[f] (universal quantifier (i.e., “For All”))

or (∃x)[f] (existential quantifier (i.e., “There Exists”))

where x is a variable and f is a predicate WFF.

E.g.,

• P(x)

• (∀x)[P(x)]

• (∃x)[P(x)]

• (∀x)
[
(∃y)[P(x)∧Q(x, y)]

]
• (∃x)

[
(∀y)[P(x, y)→ Q(x)∨Q(y) ′]

]
Matching parentheses “()” and brackets “[]” may be omitted, in which case
the order of operations is determined by precedence and associativity as in
propositional WFFs (see page 3).

An interpretation consists of

1. a domain of interpretation—a set of objects from which constants and
variables are assigned,

2. an assignment of a property of the objects in the domain of interpretation
to each predicate,

3. an assignment of an object in the domain of interpretation to each con-
stant.

The value of a predicate WFF f in an interpretation depends on the form of f:

1. If f = P(x1, x2, . . . , xn), the value is the result of the property assigned to
P applied to the objects assigned to x1, x2, . . . , xn.

2. If f is formed using a Boolean operator, the value is the result of the
Boolean operator applied to the values of its operands.

3. If f = (∀x)[f1], the value is
true if every assignment of an object in the domain of

interpretation to x causes the value of f1 to

be true

false otherwise

9

4. If f = (∃x)[f1], the value is
true if some assignment of an object in the domain of

interpretation to x causes the value of f1 to

be true

false otherwise

Example Consider the following interpretation:

• The domain of interpretation is the set of all integers

• A(x) is “x > 0”

• B(x, y) is “x > y”

• C(x) is “x ≤ 0”

• . . . ,−2,−1, 0, 1, 2, . . . are the usual constants

Evaluate the following:

(∃x)[A(x)] . . . true

(∀x)[A(x)] . . . false

(∀x)[A(x)∧ C(x)] . . . false

(∃x)[A(x)]∧ (∃x)[C(x)] . . . true

(∃x)[A(x)∧ C(x)] . . . false

(∃x)
[
A(x)∧ (∀y)[B(x, y)→ C(y)]

]
. . . true

(∀x)
[
A(x)∧ (∀y)[B(x, y)→ C(y)]

]
. . . false

Example Consider the following interpretation:

• The domain of interpretation is the set of all people

• I(x) is “x is intelligent”

• M(x) is “x likes music”

• S(x) is “x is a student”

Rewrite the following as a predicate WFF:

• All students are intelligent

(∀x)[S(x)→ I(x)]

• Some intelligent students like music

(∃x)[I(x)∧ S(x)∧M(x)]

• Everyone who likes music is a stupid student

(∀x)[M(x)→ I(x) ′ ∧ S(x)]

10

(∀x)[
scope of variable x︷︸︸︷

f1]

(∃x)[f1]

A variable in a predicate WFF is bound if

1. It occurs immediately after a quantifier (i.e., it is a quantified variable).

or 2. It is within the scope of a quantified WFF whose quantified variable is the
same as it (i.e., it is bound to a quantified variable).

Otherwise, a variable is free. E.g.,

(∀a
?
)
[
(∃b

?
)[P(a

?
, b
?
)]∧Q(a

?
, b
??
)
]

(? = bound, ?? = free)

A predicate WFF with free variables cannot be evaluated without assigning
objects to its free variables.

Predicate WFFs without free variables are called sentences, and can always be
evaluated (although the value may vary from one interpretation to the next).

A sentence is valid if it is true in all interpretations. E.g., the following are
valid:

• (∀x)[P(x)∧Q(x)]↔ (∀x)[P(x)]∧ (∀x)[Q(x)]

•
(
(∀x)[f]

) ′ ↔ (∃x)[f ′]

•
(
(∃x)[f]

) ′ ↔ (∀x)[f ′]

• (∀x)[P(x)]→ (∃x)[P(x)]

Is (∀x)[P(x)∨Q(x)]→ (∀x)[P(x)]∨ (∀x)[Q(x)] valid?

11

We will use the following proof system, called predicate logic:

Axioms:
With arbitrary predicate WFFs P, Q, R and arbitrary predicate WFFs
P(x), Q(x) in which x is free. . .

1. P → (Q→ P)

2. (P → (Q→ R))→ ((P → Q)→ (P → R))

3. (Q ′ → P ′)→ (P → Q) contr

4. (∀x)[P(x)→ Q(x)]→ (
(∀x)[P(x)]→ (∀x)[Q(x)]

)
5. Universal Instantiation ui

(∀x)[P(x)]→ P(x) (where x is a variable)

(∀x)[P(x)]→ P(a) (where a is a constant)

6. Existential Instantiation ei

(∃x)[P(x)]→ P(t)

where t is a constant not previously appearing in the proof

7. Existential Generalization eg

P(x)→ (∃x)[P(x)]
P(a)→ (∃x)[P(x)]

where a is a constant and x doesn’t appear in P(a)

8.
(
(∃x)[P(x)]

) ′ ↔ (∀x)[P(x) ′] deMorgan

Inference Rules:

1. Modus Ponens: Q can be deduced from P, P → Q. mp

2. Universal Generalization: (∀x)Q can be deduced from Q as long as. . . ug

(a) Q has not been deduced from a hypothesis in which x is a free
variable,

and (b) Q has not been deduced using Axiom 6 from (∃y)[Q(y)] in which
x is a free variable.

Example Prove (∀x)[P(x)∧Q(x)]→ (∀x)[P(x)]∧ (∀x)[Q(x)]

1. (∀x)[P(x)∧Q(x)] hyp

2. P(x)∧Q(x) 1, ui, mp

3. P(x) 2, simp

4. Q(x) 2, simp

5. (∀x)[P(x)] 3, ug

6. (∀x)[Q(x)] 4, ug

7. (∀x)[P(x)]∧ (∀x)[Q(x)] 5, 6, conj

12

Example Prove (∀x)[P(x)∨Q(x)]→ (∃x)[P(x)]∨ (∀x)[Q(x)]

1. (∀x)[P(x)∨Q(x)] hyp

2. P(x)∨Q(x) 1, ui, mp

3. P(x) ′ → Q(x) 2, imp

4. (∀x)[P(x) ′ → Q(x)] 3, ug

5. (∀x)[P(x) ′]→ (∀x)[Q(x)] 4, axiom 4, mp

6. ((∃x)[P(x)]) ′ → (∀x)[Q(x)] 5, deMorgan

7. (∃x)[P(x)]∨ (∀x)[Q(x)] 6, imp

1.5 Logic Programming

A Horn clause is a WFF of the form

P1 ∧ P2 ∧ . . .∧ Pn → Q

A logic program is a sequence of Horn clauses which are viewed as hypotheses.

A query asks whether a WFF can be deduced from a logic program. A query
is answered by a method called resolution, which essentially seeks to prove that
the WFF is a theorem by using modus ponens.

Prolog (programming with logic) is the most popular logic programming lan-
guage, particularly in artificial intelligence applications.

This area is deeply studied in CS 352 & CS 420.

1.6 Proof of Correctness

Program verification is the process of ensuring that a computer program is
correct (i.e., it behaves according to its specification).

Proofs of correctness use formal logic proofs to verify a program. Specifically,
for each line P of the program, we write the Hoare triple

{Q} P {R}

where Q is the precondition and R is the postcondition, which are assertions of
what holds true (respectively) before and after P.

This topic may appear in your CS 480 class (or in graduate-level courses).

13

2 Proofs, Recursion, and Analysis of Algorithms

2.1 Proof Techniques

In Chapter 1 we studied formal logic—arguments devoid of meaning, but true by
the form of their symbols. In practice, we want to prove facts about particular
subjects using the same techniques, but in informal ways.

Disproof by Counterexample

To prove: (∀x)[P(x)] is not true, i.e.,
(
(∀x)[P(x)]

) ′
Show that: (∃x)[P(x) ′]

Example Disprove that all animals living in the ocean are fish.

Proof. For example, whales live in the ocean and are not fish.

Example Disprove that all input to a computer is provided by the keyboard.

Proof. For example, mice provide input to a computer.

Direct Proof

To prove: P(x)

Show that: P(x) is true by generalized methods of deduction

Example Show that every integer divisible by 6 is divisible by 3.

Proof. Let x be an integer divisible by 6. There is an integer y s.t. x = 6 · y.
Therefore, x = 3 · (2 · y), and x is divisible by 3.

Proof by Contraposition

To prove: P(x)→ Q(x)

Show that: Q(x) ′ → P(x) ′

Example Show that every integer divisible by 6 is divisible by 3.

Proof. We show that every integer not divisible by 3 is not divisible by 6.

Let x be an integer not divisible by 3. x 6= 3 · y, for any integer y.

Therefore x 6= 3 · (2 · z) for any integer z.

Thus x 6= 6 · z for any integer z.

So x is not divisible by 6.

14

Example Prove that if the square of an integer is odd, the integer is odd.

Proof. Let x be an even integer. So, x = 2y for some integer y. Therefore
x2 = (2y)2 = 22y2 = 2(2y2), and x2 is itself even.

Proof by Contradiction

To prove: P(x)

Show that: P(x) ′ → F, i.e., P(x) ′ is a contradiction.

Example Prove if x+ x = x, then x = 0.

Proof. To the contrary, suppose x+ x = x and x 6= 0.

Subtracting x from both sides of x+ x = x implies that x = 0.

∴ x 6= 0 and x = 0, a contradiction.

Example Prove that
√
2 is irrational.

Proof. To the contrary, suppose
√
2 is rational.

Then there are integers p and q 6= 0 s.t.
√
2 = p/q, and p & q have no common

factors.

(
√
2)2 = (p/q)2

2 = p2/q2

p2 = 2q2

So, p2 is even. Since p2 is even, p must also be even. That is, ∃y, p = 2y.

p2 = 2q2

(2y)2 = 2q2

22y2 = 2q2

q2 = 2y2

So q2 is even, and therefore q is even.

∴
√
2 = p/q→ p and q are both even→ p and q have the common factor 2, a contradiction

15

2.2 Induction

Proof by Weak Induction

To prove: (∀n)[n ≥ 1→ P(n)]

Show that:
basis︷︸︸︷
P(1) ∧

inductive step︷ ︸︸ ︷
(∀k)[P(k)︸︷︷︸

I.H.∗

→ P(k+ 1)]

* = Inductive Hypothesis

Example Prove for n ≥ 1,
∑n

i=1(2i− 1) = n2.

Proof. (By weak induction on n)

Basis (n = 1):
∑1

i=1(2i− 1) = 2 · 1− 1 = 2− 1 = 12

Inductive Step:

k+1∑
i=1

(2i− 1) =

k∑
i=1

(2i− 1) + 2(k+ 1) − 1

= k2 + 2(k+ 1) − 1 (by I.H.)

= k2 + 2k+ 1

= (k+ 1)2

Example Prove for n ≥ 0,
∑n

i=0 2
i = 2n+1 − 1

Proof. (By weak induction on n)

Basis (n = 0):
∑0

i=0 2
i = 20 = 1 = 20+1 − 1

Inductive Step:

k+1∑
i=0

2i =

k∑
i=0

2i + 2k+1

= 2k+1 − 1+ 2k+1 (by I.H.)

= 2(2k+1) − 1

= 2(k+1)+1 − 1

16

Example Prove for n ≥ 1, 22n − 1 is divisible by 3.

Proof. (By weak induction on n)

Basis (n = 1): 22·1 − 1 = 4− 1 = 3 is divisible by 3.

Inductive Step:

22(k+1) − 1 = 22k+2 − 1

= 2222k − 1

= 22(22k − 1) + 3

= 4(3m) + 3 (by I.H.)

= 3(4m+ 1) (is divisible by 3)

Proof by Strong Induction

To prove: (∀n)[n ≥ 1→ P(n)]

Show that:

basis︷︸︸︷
P(1) ∧

inductive step︷ ︸︸ ︷(
∀k
)[

(∀r)[1 ≤ r ≤ k→ P(r)]︸ ︷︷ ︸
I.H.

→ P(k+ 1)
]

Example Prove that every postage ≥ 8¢ can be formed with 3¢ and 5¢ stamps.

Proof. (By strong induction on the cost.)
Let P(n) =“postage of n¢ can be formed using only 3¢ and 5¢ stamps”.

Basis (n = 8): 5¢ + 3¢ = 8¢

Basis (n = 9): 3¢ + 3¢ + 3¢ = 9¢

Basis (n = 10): 5¢ + 5¢ = 10¢

Inductive Step (n ≥ 11):
Assume as our I.H. that P(r) is true for 8 ≤ r ≤ k.

Consider k+ 1 ≥ 11. By the I.H., P
(
(k+ 1) − 3

)
is true, as (k+ 1) − 3 =

k− 2 ≥ 8. Then, to the stamps used for the
(
(k+ 1) − 3

)
¢ postage, add a

3¢ stamp, thus giving us the total postage of (k + 1)¢—proving P(k + 1)
is true.

17

2.4 Recursive Definitions

A recursive (inductive) definition defines an entity in terms of itself; technically,
in simpler versions of itself. There are two parts:

Basic Case (Basis)
The most primitive case(s) of the entity are defined without self-reference.

Recursive Case (Inductive Case)
New cases of the entity are defined in terms of simpler cases of the entity.

A sequence S is an ordered (potentially infinite) list of objects. S(n) denotes
the nth object in the sequence.

Example

S(1) = 2 (basic case)

S(n) = 2 · S(n− 1) for n ≥ 2 (recursive case)

The “expanded” sequence S is 2, 4, 8, 16, 32, . . .

Example

T(1) = 1 (basic case)

T(n) = T(n− 1) + 3 for n ≥ 2 (recursive case)

The “expanded” sequence T is 1, 4, 7, 10, 13, . . .

Example The Fibonacci sequence F is defined by

F(1) = 1 (basic case)

F(2) = 1 (basic case)

F(n) = F(n− 2) + F(n− 1) for n > 2 (recursive case)

The “expanded” Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

18

Proofs of properties about recursively defined entities are typically inductive.

Example Prove F(n+ 4) = 3F(n+ 2) − F(n) for n ≥ 1.

Proof. (By strong induction on n)

Basis (n = 1): F(5) = 5 = 3 · 2− 1 = 3F(3) − F(1)

Basis (n = 2): F(6) = 8 = 3 · 3− 1 = 3F(4) − F(2)

Inductive Step:

F((k+ 1) + 4) = F(k+ 5)

= F(k+ 3) + F(k+ 4) (by defn. F)

=
(
3F(k+ 1) − F(k− 1)

)
+
(
3F(k+ 2) − F(k)

)
(by I.H.)

= 3
(
F(k+ 1) + F(k+ 2)

)
−
(
F(k− 1) + F(k)

)
= 3F(k+ 3) − F(k+ 1) (by defn. F)

= 3F((k+ 1) + 2) − F(k+ 1)

A set is an unordered collection of objects in which no object appears twice in
the collection. They, too, may be defined recursively.

Example Earlier, we defined the set of all propositional WFFs recursively:

1. A variable (e.g., A,B,C, . . .) is a WFF (basic case)

2. A WFF may be an expression with the form (recursive case)

(f1 ∧ f2)

or (f1 ∨ f2)

or (f ′)

or (f1 → f2)

or (f1 ↔ f2)

where f, f1, f2 are WFFs.

Example The set of ancestors of Alex Vondrak is recursively defined:

1. Alex Vondrak’s parents are ancestors. (basic case)

2. Parents of ancestors are themselves ancestors. (recursive case)

19

Really, we could recursively define pretty much anything.

Example Multiplication can be defined recursively:

1. m · 1 = m (basic case)

2. m · n = m · (n− 1) +m for n ≥2 (recursive case)

For instance,

3 · 4 = 3 · 3+ 3

= (3 · 2+ 3) + 3

=
(
(3 · 1+ 3) + 3

)
+ 3

=
(
(3+ 3) + 3

)
+ 3

= 12

Example Exponentiation can be defined recursively:

1. a0 = 1 (basic case)

2. an = (an−1) · a (recursive case)

For instance,

24 = 23 · 2
= 22 · 2 · 2
= 21 · 2 · 2 · 2
= 20 · 2 · 2 · 2 · 2
= 1 · 2 · 2 · 2 · 2
= 16

An algorithm is a step-by-step process for solving a problem. A recursive
algorithm is an algorithm that uses recursion.

Example The binary search algorithm is a fast way to search through a sorted
sequence, S, for a particular member, x.

At any particular step of the algorithm, we’re narrowing the search to somewhere
between S(i) and S(j) (initially 1 and n). For each specific i and j, represent
the midpoint between them with m = b(i+ j)/2c.

Basic Cases:

1. If i > j, then x is not in S.

2. If S(m) = x, then x is in S.

Recursive Cases:

1. If S(m) > x, then search between S(i) and S(m− 1)

2. If S(m) < x, then search between S(m+ 1) and S(j)

20

3 Sets, Combinatorics, Probability, and Num-
ber Theory

3.1 Sets

A set is an unordered collection of objects in which no object appears twice.

Notation

a ∈ A (object a is a member (or element) of set A)

a /∈ A (object a is not a member of set A)

A = B ⇔ (∀x)[x ∈ A↔ x ∈ B] (equal)

A ⊆ B ⇔ (∀x)[x ∈ A→ x ∈ B] (subset)

A ⊇ B ⇔ (∀x)[x ∈ B→ x ∈ A] (superset)

A ⊂ B ⇔ A ⊆ B∧A 6= B (proper subset)

A ⊃ B ⇔ A ⊇ B∧A 6= B (proper superset)

Sets can be defined by enumerating its elements.

Example
{0, 1} represents a set of two elements (0 and 1, in no particular order)

{red,blue, green} represents a set of three elements (colors)

{1, 2, 3, . . .} represents an infinite set (of natural numbers)

Sets can also be defined using a characterizing property in set-builder notation.

{ x | P(x) }

set

expression

“such that”

characterizing property

set

21

Example

{x | x is a positive integer}

{x | x is an integer ∧ 3 < x ≤ 7}

Well-known sets:

N = {x | x is a natural number}

= {0, 1, 2, . . .} (sometimes without 0)

Z = {x | x is an integer}

= {. . . ,−2,−1, 0, 1, 2, . . .}

Q = {x | x is a rational number}

R = {x | x is a real number}

C = {x | x is a complex number}

The empty set, { }, is the set with no elements. Often, it is denoted ∅.

The powerset of a set S, denoted ℘(S), is the set of all subsets of S.

Example Let S = {1, 2, 3}.

℘(S) =
{

∅, {1}, {2}, {3}︸ ︷︷ ︸
singletons

, {1, 2}, {1, 3}, {2, 3}︸ ︷︷ ︸
doubletons

, {1, 2, 3}
}

The cardinality of a set S, denoted ‖S‖, is the numbers of elements in S.

Example

‖{1, 2, 3}‖ = 3

‖∅‖ = 0

‖{1, 3}‖ = 2

‖{red, green,blue}‖ = 3

Operations on sets

A ∪ B = {x | x ∈ A∨ x ∈ B} (union)

A ∩ B = {x | x ∈ A∧ x ∈ B} (intersection)

A− B = {x | x ∈ A∧ x /∈ B} (difference)

A× B = {(x, y) | x ∈ A∧ y ∈ B} (cross product)

Two sets A,B are disjoint if A ∩ B = ∅

22

Example Suppose U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Let A = {1, 3, 5, 7, 9}.
Let B = {2, 4, 6, 8, 10}.
Let C = {6, 1, 7, 3, 9}.
The following are true:

A ∪ C = {1, 3, 5, 6, 7, 9}

A ∩ C = {1, 3, 7, 9}

B ∪ C = U− {5}

B ∩ C = {6}

A ∩ B = ∅ (A and B are disjoint)

A ∪ B = U

Set Identities

1. Commutativity

A ∪ B = B ∪A

A ∩ B = B ∩A

2. Associativity

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

3. Distributivity

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

4. Identity

A ∪∅ = A

A ∩U = A

5. Complement

A ∪A ′ = U

A ∩A ′ = ∅

where A ′ = U−A and U is the universal set.

23

Example Prove that A = B↔ (A ⊆ B)∧ (A ⊇ B).

Proof.

A = B↔ (∀x)[x ∈ A↔ x ∈ B] (by defn =)↔ (∀x)[x ∈ A→ x ∈ B∧ x ∈ B→ x ∈ A] (by defn ↔)↔ (∀x)[x ∈ A→ x ∈ B]∧ (∀x)[x ∈ B→ x ∈ A] (see page 12)↔ (A ⊆ B)∧ (A ⊇ B) (by defn ⊆, ⊇)

Example Prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Proof.

(⊆) Consider an arbitrary member x ∈ A ∪ (B ∩ C).

x ∈ A ∪ (B ∩ C)→ x ∈ A∨ x ∈ (B ∩ C) (by defn ∪)→ x ∈ A∨ (x ∈ B∧ x ∈ C) (by defn ∩)→ (x ∈ A∨ x ∈ B)∧ (x ∈ A∨ x ∈ C) (dist ∨ over ∧)→ x ∈ (A ∪ B)∧ x ∈ (A ∪ C) (by defn ∪)→ x ∈ (A ∪ B) ∩ (A ∪ C) (by defn ∩)

(⊇) Symmetric.

Example Prove that (A ⊆ B)∧ (B ⊆ C)→ (A ⊆ C).

Proof. Suppose that A ⊆ B and B ⊆ C are both true. Keep in mind what this
means:

A ⊆ B↔ (∀x)[x ∈ A→ x ∈ B] (by defn)

B ⊆ C↔ (∀x)[x ∈ B→ x ∈ C] (by defn)

We want to show that (A ⊆ C). I.e., that (∀x)[x ∈ A → x ∈ C] must be true.
Thus, fix any x (technically by universal instantiation) and assume x ∈ A. We
show that x ∈ C must be true.

Since x ∈ A and A ⊆ B, x ∈ B must be true. Since x ∈ B and B ⊆ C, we know
that x ∈ C must be true, as required.

24

4 Relations, Functions, and Matrices

4.1 Relations

An n-tuple is an ordered sequence of n objects. n-tuples are written by listing
the n objects within parentheses separated by commas.

Example

2-tuples (a.k.a., ordered pairs):

• (5, 3)

• (apple, red)

• (Vondrak, Alex)

3-tuples (a.k.a., ordered triples):

• (3, 6, − 4)

• (apple, red, green)

• (Olmos, Edward, James)

Let S1, S2, . . . , Sn be sets.

The n-ary product of S1, S2, . . . , Sn, denoted

S1 × S2 × . . .× Sn

is defined by

S1 × S2 × . . .× Sn = {(x1, x2, . . . , xn) | x1 ∈ S1 ∧ x2 ∈ S2 ∧ . . .∧ xn ∈ Sn}

(Note that at n = 2, this is the same as the cross product.)

Example Let X = {1, 2}. Let Y = {3, 4}. Let Z = {5, 6}.

X× Y = {(1, 3), (1, 4), (2, 3), (2, 4)}

X× Y × Z = {(1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6)}

An n-ary relation is a subset of S1 × S2 × . . .× Sn.

n Relation Type
1 unary or property
2 binary
3 ternary
4 quaternary

25

Example Let H = the set of humans (living or dead). parent ⊆ H × H is
defined by

parent = {(h1, h2) | h1 is a parent of h2}

Example Let F = the set of all foods, C = the set of all colors. Food Color ⊆
F× C is defined by

Food Color = {(f, c) | f occurs in color c}

Example “≤” ⊆ N× N is defined by

“≤” = {(x, y) | x ≤ y}

Properties of Binary Relations

Let R be a binary relation on set S (i.e., R ⊆ S× S).

R is reflexive if (∀x ∈ S)[(x, x) ∈ R].

R is symmetric if (∀x, y ∈ S)[(x, y) ∈ R→ (y, x) ∈ R].

R is transitive if (∀x, y, z ∈ S)[(x, y) ∈ R∧ (y, z) ∈ R→ (x, z) ∈ R].

R is antisymmetric if (∀x, y ∈ S)[(x, y) ∈ R∧ (y, x) ∈ R→ x = y].

R is 1-1 if (∀x1, x2, y ∈ S)[(x1, y) ∈ R∧ (x2, y) ∈ R→ x1 = x2].

R is onto if (∀y ∈ S)(∃x ∈ S)[(x, y) ∈ R].

R is an equivalence relation if R is reflexive, symmetric, and transitive.

R is a partial ordering if R is reflexive, transitive, and anti-symmetric.

R is a total ordering if R is a partial ordering and (∀x, y ∈ S)[(x, y) ∈ R∨ (y, x) ∈ R]︸ ︷︷ ︸
all elements are comparable

The inverse (or reversal) of R, denoted R−1, is defined by

R−1 = {(y, x) | (x, y) ∈ R}

Binary relations can be illustrates using Venn diagrams; e.g., (x, y) ∈ R ⊆ S×T :

S T

x

yR

R

R

R

26

4.4 Functions

f ⊆ S× T is a function if f−1 is 1-1 and onto.

Note: (x, y) ∈ f can be denoted f(x) = y.

Note: f ⊆ S × T can be denoted f : S → T . S is called the domain and T is
called the codomain.

The range of f : S→ T is {f(x) | x ∈ S}.

3 Sets, Combinatorics, Probability, . . .

3.1 Sets

Countable and Uncountable Sets

Let S and T be sets.

S and T are equipollent (‖S‖ = ‖T‖) if

(∃f : S→ T)[f is 1-1 ∧ f is onto]

S is denumerable if N and S are equipollent.

S is countable if
S is finite ∨ S is denumerable

Theorem. Z is countable.

Proof. Let f : N→ Z be defined by

f(n) =

n

2
if n is even

−
⌈n
2

⌉
if n is odd

n f(n)
0 0
1 −1
2 1
3 −2
4 2
5 −3
6 3
...

...

f is 1-1 & onto ∴ Z is denumerable and thus countable

27

Theorem. S = {x | x ∈ R∧ 0 ≤ x < 1} is uncountable.

Proof by Contradiction. To the contrary, suppose S is countable. For S to be
countable, it must be denumerable (since S is clearly infinite).

Thus, (∃f : N→ S)[f is 1-1∧ f is onto]. So, we’re assuming it’s possible to write
out the range of f in some order:

f(0) = .d0,1 d0,2 d0,3 d0,4 · · ·
f(1) = .d1,1 d1,2 d1,3 d1,4 · · ·
f(2) = .d2,1 d2,2 d2,3 d2,4 · · ·
f(3) = .d3,1 d3,2 d3,3 d3,4 · · ·

f(4) = .d4,1 d4,2 d4,3 d4,4

. . .
...

...

Since f is onto, (∀y ∈ S)(∃n ∈ N)[y = f(n)].

Since f is 1-1, there are no repeated numbers above—each “row” of digits is
unique.

Consider constructing the following decimal number by diagonalization:

f(0) = . d0,1 d0,2 d0,3 d0,4 · · ·
f(1) = .d1,1 d1,2 d1,3 d1,4 · · ·
f(2) = .d2,1 d2,2 d2,3 d2,4 · · ·
f(3) = .d3,1 d3,2 d3,3 d3,4 · · ·

f(4) = .d4,1 d4,2 d4,3 d4,4

. . .
...

...

y = 0.9999 . . .− 0.d0,1d1,2d2,3d3,4 . . . is guaranteed to not be listed above:

• Its first digit is 9 − d0,1, which is going to be different from f(0)’s first
digit (which is d0,1).

• Its second digit is 9−d1,2, which is going to be different from f(1)’s second
digit (which is d1,2).

• Its third digit is 9 − d2,3, which is going to be different from f(2)’s third
digit (which is d2,3).

• And so on.

Since 0 ≤ y < 1, y ∈ S.

However, (6 ∃n ∈ N)[y = f(n)], a contradiction.

28

3.2 Counting

Combinatorics is the mathematics of counting—how many items are in a set?
In how many ways can something occur? Etc.

Example How many rows are in a truth table with three variables (A, B, C)?

A = F

A,B = F, F

F, F, F F, F, T

A,B = F, T

F, T, F F, T, T

A = T

A,B = T, F

T, F, F T, F, T

A,B = T, T

T, T, F T, T, T

The multiplication principle states that if there are n1 possible outcomes for
event 1 and n2 possible outcomes for event 2, there are n1 ·n2 possible outcomes
for the sequence of the two events (“event 1 and event 2”).

Example

Q: How many 3-bit binary numbers are there?

A:

choices for 1st bit︷︸︸︷
2 ×

choices for 2nd︷︸︸︷
2 ×

choices for 3rd︷︸︸︷
2 = 23 = 8

Example

Q: How many outfits (shirts & pants) are possible if you have 3
shirts and 5 pairs of pants?

A: 3 · 5 = 15

The addition principle states that if the disjoint events A and B have n1 and n2

possible outcomes (respectively), then the event “A or B” has a total of n1+n2

possible outcomes.

Example

Q: A dealer sells 23 different cars and 14 different trucks. How
many selections does a customer have?

A: 23+ 14 = 37

29

Example

Q: Someone has 7 blouses, 5 skirts, and 9 dresses. How many
outfits are possible?

A: An outfit consists of either a blouse & a skirt or just a dress.
The number of outfits consisting of a blouse & a skirt is 7 · 5 =
35. The number of outfits consisting of just a dress is 9. Thus,
there are 35+ 9 = 44 possible outfits.

3.3 Principle of Inclusion and Exclusion; Pigeonhole Prin-
ciple

Principle of Inclusion and Exclusion

Given the finite sets A and B,

‖A ∪ B‖ = ‖A‖+ ‖B‖− ‖A ∩ B‖

Proof. First, notice that if X and Y are any two disjoint sets, then ‖X] Y‖ =
‖X‖+‖Y‖ by the addition princple (where] is “disjoint union”). Also, it’s clear
that for any sets X and Y (disjoint or otherwise), ‖X− Y‖ = ‖X‖− ‖X ∩ Y‖.
Further, if A and B are any subsets of a universal set U, then A−B, B−A, and
A ∩ B are mutually disjoint sets.

A− B

A

B−A

B

A ∩ B

Note that A ∪ B = (A− B)] (A ∩ B)] (B−A). Then,

‖(A ∪ B)‖ = ‖(A− B)] (A ∩ B)] (B−A)‖
= ‖A− B‖+ ‖A ∩ B‖+ ‖B−A‖ (addition principle)

= ‖A‖− ‖A ∩ B‖+ ‖A ∩ B‖+ ‖B‖− ‖B ∩A‖
= ‖A‖− ‖A ∩ B‖+ ‖A ∩ B‖+ ‖B‖− ‖A ∩ B‖ (commutativity)

= ‖A‖+ ‖B‖− ‖A ∩ B‖

30

Intuitively, ‖A‖+‖B‖ “double counts” the elements of ‖A∩B‖, so we subtract off
the error—we include the number of elements in A and the number of elements
in B, but we exclude the element of A ∩ B to avoid counting them twice.

Example

Q: A total of 35 voters cast their votes (support/oppose) for two
different referendums. 14 voters supported referendum A and
26 supported referendum B. How many voters supported both
referendums A and B? How many supported only referendum
A? How many supported only referendum B?

A: We’re given the following information

‖A ∪ B‖ = 35

‖A‖ = 14

‖B‖ = 26

We’re asked for ‖A ∩ B‖, ‖A − B‖, and ‖B − A‖. We can use
the principle of inclusion and exclusion to answer the first one:

‖A ∪ B‖ = ‖A‖+ ‖B‖− ‖A ∩ B‖
35 = 14+ 26− ‖A ∩ B‖
−5 = −‖A ∩ B‖

‖A ∩ B‖ = 5

The others can be solved with this new piece of data:

‖A− B‖ = ‖A‖− ‖A ∩ B‖ = 14− 5 = 9

‖B−A‖ = ‖B‖− ‖B ∩A‖ = 26− 5 = 21

Pigeonhole Principle

Imagine a series of cubbyholes in which we stuff pigeons (which I guess we
raise and domesticate for our own odd amusement). Suppose there are k such
pigeonholes. If we try to cram any more than k pigeons into the pigeonholes,
at least one hole will contain more than 1 pigeon—no matter how hard we try.

Example

Q: A disorderly person doesn’t roll their socks into pairs. They
just have a drawer full of random socks—either white or black.
How many socks must they pull blindly from the drawer to
guarantee that they will have a matched pair?

31

A: Here, the pigeonholes = sock colors (either white or black), and
the pigeons = socks.

– If we grab one sock, we don’t have a pair.

– If we grab two socks, they might be mismatched.

– If we grab three socks, then we’ve overstuffed the pigeon-
holes: we’ll have at least one duplicate color, and thus a
matched pair.

Example

Q: How many people must be in a room to guarantee that two
people have last names that begin with the same letter?

A: Here, the pigeonholes = letters (26 possibilities in English), and
the pigeons = people. So, if there are 27 people, the pigeonhole
principle guarantees that there will be at least one pigeonhole
(letter) with two pigeons (two people).

3.4 Permutations and Combinations

A permutation is an ordered arrangement of objects.

The number of permutations of r distinct objects chosen from n distinct objects
is denoted P(n, r) (oftentimes nPr).

Theorem. P(n, r) =
n!

(n− r)!

Proof. Consider selecting the r distinct objects one-by-one from the n distinct
objects. Since the n objects are themselves distinct, note that there will be no
repeats in our choices for each of the r items.

Then, by the multiplication principle, the total number of permutations possible
is

n︸︷︷︸
choices for 1st item

× (n− 1)︸ ︷︷ ︸
choices for 2nd item

× (n− 2)︸ ︷︷ ︸
choices for 3rd item

× · · ·× (n− (r− 1))︸ ︷︷ ︸
choices for rth item

By definition of factorial, n! = n× (n− 1)× (n− 2)× (n− 3)× · · · × 3× 2× 1.
Thus,

n!

(n− r)!
=

n× (n− 1)× · · · × (n− (r− 1))× (n− r)× (n− r− 1)× · · · × 3× 2× 1

(n− r)(n− r− 1)(n− r− 2) · · · × 3× 2× 1

=
n× (n− 1)× · · · × (n− (r− 1))×����(n− r)×�����

(n− r− 1)× · · · × �3× �2× �1

����(n− r)�����
(n− r− 1)�����

(n− r− 2) · · · × �3× �2× �1

= n× (n− 1)× · · · × (n− (r− 1))

32

Example

Q: How many possible 7-digit phone numbers are there without
any repeated digits?

A: 10× 9× 8× 7× 6× 5× 4 = 604, 800. That is,

P(10, 7) =
10!

(10− 7)!

=
10!

3!

=
10× 9× 8× 7× 6× 5× 4× 3× 2× 1

3× 2× 1

= 10× 9× 8× 7× 6× 5× 4

= 604, 800

Sometimes we want to select r objects from a set of n, but we don’t care how
they are arranged. This is the number of combinations of r distinct objects
chosen from n distinct objects, and is denoted by any of

C(n, r) nCr Cn
r

(
n

r

)

Theorem. C(n, r) =
P(n, r)

r!

Proof. Select r distinct unordered objects from a set of n distinct objects. There
are C(n, r) ways to do this. Now, take each of the r objects and place them in
some order:

item 1︸ ︷︷ ︸
r choices

, item 2︸ ︷︷ ︸
r − 1 choices

, item 3︸ ︷︷ ︸
r − 2 choices

, . . . , item r︸ ︷︷ ︸
1 choice

By the multiplication principle, there are r×(r−1)×(r−2)×· · ·×3×2×1 = r!
ways to select an ordering of the combination. So there are C(n, r) · r! ways to
select any ordered subset of r distinct objects from n distinct objects.

That is, C(n, r) · r! = P(n, r), so C(n, r) =
P(n, r)

r!
.

33

Example

Q: How many 5-card poker hands can be dealt from a 52-card
deck?

A: Here, order doesn’t matter (just that we have certain cards in
hand). So, we’re interested in the number of combinations:

C(52, 5) =
P(52, 5)

5!

=

52!
(52−5)!

5!

=
52!

47! · 5!
= 2, 598, 960

34

