Predicate Logic CS 130

Alex Vondrak

ajvondrak@csupomona.edu

Winter 2012

Predicates and Terms

Definition (Predicate)

- A "yes/no", "true/false" property of one or more terms
- Typically represented by uppercase letters (A, B, C, etc.)

Definition (Term)

- A variable, denoted by a lowercase letter (a, b, c, etc.)
- A constant, denoted by an underlined lowercase letter (<u>a</u>, <u>b</u>, <u>c</u>, etc.)
- A function, also denoted by a lowercase letter, but followed by a comma-separated list of more terms—inputs

Predicates and Terms

Examples (Notation)

Typically, we write predicates and functions in prefix notation:

- A(x)
- $B(x, f(y), \underline{z})$
- q(n,<u>m</u>)
- $g(x, \underline{a}, h(z))$

For common predicates like =, we might also write infix notation:

$$x = y$$
 VS $= (x, y)$

Example (Predicates vs Functions)

Compare:

- f(x): "the father of x"
- F(x): "x is a father"

Let

$$K(x) = "x \text{ is a Klingon"}$$
$$V(x) = "x \text{ is a Vulcan"}$$
$$f(x) = \text{the father of } x$$
$$\underline{s} = \text{Spock}$$
$$w = \text{Worf}$$

How would you symbolize the sentence "Worf is a Klingon"?

(A) *K*(<u>w</u>)

- (B) K(x)
- (C) K(w)
- (D) <u>w</u>(K)

Let

$$K(x) = "x \text{ is a Klingon"}$$
$$V(x) = "x \text{ is a Vulcan"}$$
$$f(x) = \text{the father of } x$$
$$\underline{s} = \text{Spock}$$
$$w = \text{Worf}$$

How would you symbolize the sentence "Worf is a Vulcan"?

- (A) *K*(<u>w</u>)
- (B) V(<u>s</u>)
- (C) V(<u>w</u>)

(D) You can't; Worf is a Klingon, not a Vulcan

Let

$$K(x) = "x \text{ is a Klingon"}$$
$$V(x) = "x \text{ is a Vulcan"}$$
$$f(x) = \text{the father of } x$$
$$\underline{s} = \text{Spock}$$
$$w = \text{Worf}$$

How would you symbolize the sentence "Spock's father is a Vulcan"? (A) $f(V(\underline{s}))$ (B) $V(\underline{s})$ (C) $V(f(\underline{s}))$ (D) V(x)

Let

$$K(x) = "x \text{ is a Klingon"}$$
$$V(x) = "x \text{ is a Vulcan"}$$
$$f(x) = \text{the father of } x$$
$$\underline{s} = \text{Spock}$$
$$w = \text{Worf}$$

How would you symbolize the sentence "Darth Vader is a Vulcan"?

- (A) $V(\underline{d})$
- (B) V(Darth Vader)
- (C) V(x)
- (D) None of the above

Quantifiers

Definition

We will have two quantifier symbols, \forall and \exists , which will always be followed by a variable (never a constant or a function)

- $\forall x \text{ is pronounced "for all } x$ "
- $\exists x \text{ is pronounced "there exists an } x$ "

Predicate WFFs

Definition

One of:

- A term
- A predicate applied to one or more terms
- $(F_1 \wedge F_2)$
- $(F_1 \vee F_2)$
- $(F_1 \implies F_2)$
- $(F_1 \iff F_2)$
- $\neg F_1$
- $\forall x[F_1]$
- $\exists x[F_1]$

where F_1 and F_2 are themselves predicate WFFs and x is any variable.

Predicate WFFs

Note

- We'll often denote an arbitrary predicate WFF by a single uppercase letter (A, B, C, etc.)
- We'll usually use A(x, y, z) to represent a predicate WFF involving the variables x, y, and z

If there's any potential confusion between a formula and a predicate, I'll try to have an extra explanation.

Let

M(x) = "x is a Class M planet" L(x) = "x supports life"

What is the English equivalent of the following predicate WFF?

$$\forall x[(L(x) \implies M(x))]$$

- (A) Every Class M planet supports life
- (B) Every life-supporting planet is Class M
- (C) Some Class M planets do not support life
- (D) All planets support life or are Class M

Let

M(x) = "x is a Class M planet" L(x) = "x supports life"

What is the English equivalent of the following predicate WFF?

 $\forall x[(M(x) \lor L(x))]$

- (A) All planets are either Class M or support life
- (B) Either all planets are Class M or all planets support life
- (C) All planets are Class M and support life
- (D) Some planets are Class M; others support life

Let

M(x) = "x is a Class M planet" L(x) = "x supports life"

What is the English equivalent of the following predicate WFF?

 $(\forall x[M(x)] \lor \forall x[L(x)])$

- (A) All planets are either Class M or support life
- (B) Either all planets are Class M or all planets support life
- (C) All planets are Class M and support life
- (D) Some planets are Class M; others support life

Let

M(x) = "x is a Class M planet" L(x) = "x supports life"

What is the English equivalent of the following predicate WFF?

 $\forall x[(M(x) \vee \neg M(x))]$

(A) All planets are Class M

- (B) All planets are Class M, or all planets are not
- (C) Some planets are Class M; others are not
- (D) A planet is either Class M or it is not

Let

M(x) = "x is a Class M planet" L(x) = "x supports life"

What is the English equivalent of the following predicate WFF?

 $(\forall x[M(x)] \lor \forall x[\neg M(x)])$

- (A) Some planets are Class M; others are not
- (B) All planets are Class M, or all planets are not
- (C) Some planets are Class M and others are not
- (D) A planet is either Class M or it is not

Let

M(x) = "x is a Class M planet" L(x) = "x supports life"

What is the English equivalent of the following predicate WFF?

 $\neg \forall x [(M(x) \lor L(x))]$

(A) Some planets are neither Class M nor support life

- (B) Not all planets are both Class M and support life
- (C) All planets are neither Class M nor support life
- (D) All planets are either not Class M or do not support life

Thinking About \forall and \exists

 \forall is like a big conjunction Intuitively, $\forall x[x > 2]$ means:

0 > 2 $\land 1 > 2$ $\land 2 > 2$ $\land 3 > 2$ ∃ is like a big disjunction Intuitively, $\exists x[x > 2]$ means: 0 > 2 ∨ 1 > 2 ∨ 2 > 2 ∨ 3 > 2 ⋮

Α	В	(¬(A	\wedge	B)	\iff	(¬A	\vee	$\neg B))$	
F	F				Т	Т	Т	Т	-
F	Т		F		Т	Т	Т	F	
Т	F	Т	F		Т	F	Т	Т	
Т	Т	F	Т		Т	F	F	F	

Thinking About \forall and \exists

 \forall is like a big conjunction Intuitively, $\forall x[x > 2]$ means:

0 > 2 $\land 1 > 2$ $\land 2 > 2$ $\land 3 > 2$ ∃ is like a big disjunction Intuitively, $\exists x[x > 2]$ means: 0 > 2 ∨ 1 > 2 ∨ 2 > 2 ∨ 3 > 2 ⋮

Α	В	(¬(A	\vee	B)	\Leftrightarrow	(¬A	\wedge	$\neg B))$	
		Т			Т	Т	Т	Т	-
	Т		Т		Т	Т	F	F	
Т	F		Т		Т	F	F	Т	
Т	Т	F	Т		Т	F	F	F	

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Somebody loves everybody

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Everybody loves somebody

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Somebody loves somebody

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Everybody loves everybody

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Everybody is loved by everybody

(A) $\forall x [\forall y [L(y, x)]]$ (B) $\forall x [\forall y [L(x, y)]]$ (C) $\exists x [\exists y [L(x, y)]]$ (D) $\exists x [\exists y [L(y, x)]]$

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Somebody is loved by somebody

(A) $\forall x [\forall y [L(y, x)]]$ (B) $\forall x [\forall y [L(x, y)]]$ (C) $\exists x [\exists y [L(x, y)]]$ (D) $\exists x [\exists y [L(y, x)]]$

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Everybody is loved by somebody

(A) $\forall x [\exists y [L(y, x)]]$ (B) $\forall x [\exists y [L(x, y)]]$ (C) $\exists x [\forall y [L(x, y)]]$ (D) $\exists x [\forall y [L(y, x)]]$

Let L(x, y) = "x loves y". What is the predicate logic equivalent of the following English sentence?

Somebody is loved by everybody

(A) $\forall x [\exists y [L(y, x)]]$ (B) $\forall x [\exists y [L(x, y)]]$ (C) $\exists x [\forall y [L(x, y)]]$ (D) $\exists x [\forall y [L(y, x)]]$

Let

$$P(x) = "x ext{ is a man"}$$

 $Q(x) = "x ext{ is mortal"}$
 $\underline{s} = ext{Socrates}$

How would you symbolize the following argument in predicate logic?

All men are mortal. Socrates is a man.

.:. Socrates is mortal.

Is the following true or false?

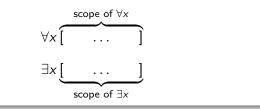
x = 2

- (A) True
- (B) False
- (C) Can't be determined

Free Variables

Definition (Scope)

The scope of a quantifier is the stuff in between the square brackets:



Definition (Free & Bound Variables)

A variable in a predicate WFF is **bound** if it occurs within the scope of a quantifier over that variable.

Otherwise, the variable is free.

Free Variables

Examples

Free variables are highlighted in the WFFs below:

•
$$(\forall x [(P(x) \implies \forall y [(R(x) \lor Q(y))])] \land B(x))$$

•
$$\left(\exists x \left[\forall y [M(x, y, f(x, z))]\right] \lor G(x, y, z)\right)$$

Definition

A closed predicate WFF is one in which there are no free variables. Also known as a sentence. Which of the following is a closed formula?

- (A) $\forall x[x=2]$
- (B) $\exists x[x=2]$
- (C) Both of the above
- (D) None of the above

Which of the following is true?

- (A) $\forall x[x=2]$
- (B) $\exists x[x=2]$
- (C) Both of the above
- (D) None of the above

Models

Definition

To evaluate the truth of a predicate WFF, we may need to define a model (aka an interpretation):

- A "universe" (or domain of interpretation) of possible objects that variables may represent
- The meanings of all predicate symbols
- The meanings of all function symbols
- The meanings of all constant symbols (which must represent objects from the domain of interpretation)

Note

- We don't change the meaning of symbols like \forall , \exists , \land , \lor , etc.
- All predicates and functions must make sense for everything in the particular universe

$$\Big(\forall x[(P(x) \lor Q(x))] \implies (\forall x[P(x)] \lor \forall x[Q(x)])\Big)$$

Given the following model, is the WFF true or false?

- The universe is everybody in this room
- P(x) = "x is a student"
- Q(x) = "x is a teacher"
- (A) True
- (B) False
- (C) Can't be determined

$$\Big(\forall x [(P(x) \lor Q(x))] \implies (\forall x [P(x)] \lor \forall x [Q(x)]) \Big)$$

Given the following model, is the WFF true or false?

- The universe is everybody in this room
- P(x) = "x is wearing clothes"
- Q(x) = "x is wearing shoes"
- (A) True
- (B) False
- (C) Can't be determined

$$\Big(\forall x[(P(x) \lor Q(x))] \implies (\forall x[P(x)] \lor \forall x[Q(x)])\Big)$$

Given the following model, is the WFF true or false?

- The universe is everybody on Earth
- P(x) = "x is wearing clothes"
- Q(x) = "x is wearing shoes"
- (A) True
- (B) False
- (C) Can't be determined

Can we determine the truth value of a predicate WFF without a model?

- (A) Yes
- (B) No

Validity

Definition

A predicate WFF is valid if it is true in every possible model

Examples

•
$$\forall x[(A(x) \implies A(x))]$$

• $\forall x \Big[\exists y \big[(C(x, y) \implies C(x, y)) \big] \Big]$
• $\Big(\forall x [(P(x) \land Q(x))] \iff (\forall x [P(x)] \land \forall x [Q(x)])$
• $\Big(\forall x [W] \iff \neg \exists x [\neg W] \Big)$
• $\Big(\exists y [A] \implies (\forall x [B] \implies \exists y [A]) \Big)$

Moral: all propositional tautologies are logically valid predicate WFFs, but not every logically valid predicate WFF is an instance of a propositional tautology.

Predicate Logic Proof System

Definition (Axioms) Axiom 1: \vdash ($A \implies (B \implies A)$) Axiom 2: \vdash (($A \implies (B \implies C$)) \implies (($A \implies B$) \implies ($A \implies C$))) Axiom 3: \vdash (($\neg B \implies \neg A$) \implies ($A \implies B$)) Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)Axiom 5: \vdash ($\forall x[(A \implies B)] \implies (A \implies \forall x[B])$), Provided that: x does not occur free in A

Definition (Inference Rules)

$$A, (A \implies B)$$
 \vdash B (Modus Ponens) A \vdash $\forall x[A]$ (Universal Generalization)

Alex Vondrak (ajvondrak@csupomona.edu)

Predicate Logic

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\Big(\forall x \big[\exists y [B(x, y, z)]\big] \implies \exists y [B(x, y, z)]\Big)$$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

$$\Big(\forall x \big[\exists y [B(x, y, z)]\big] \implies \exists y [B(x, y, z)]\Big)$$

(A) Yes —there are no
$$\exists x \text{ or } \forall x \text{ quantifiers in } \exists y[B(x, y, z)]$$

(B) No

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\Big(\forall x \big[\exists y [B(x, y, z)]\big] \implies \exists y [B(y, y, z)]\Big)$$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\Big(\forall x \big[\exists y [B(x, y, z)] \big] \implies \exists y [B(y, y, z)] \Big)$$

(A) Yes (B) No—x occurs free in the scope of $\exists y$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\Big(\forall x \big[\exists y [B(x, y, z)]\big] \implies \exists y [B(z, y, z)]\Big)$$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

$$\Big(\forall x \big[\exists y [B(x,y,z)]\big] \implies \exists y [B(z,y,z)]\Big)$$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\left(\forall x \left[\exists y [B(x, y, z)]\right] \implies \exists y [B(q, y, z)]\right)$$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

$$\left(\forall x \left[\exists y [B(x, y, z)]\right] \implies \exists y [B(q, y, z)]\right)$$

(A) Yes —there are no
$$\exists q$$
 or $\forall q$ quantifiers in $\exists y[B(x, y, z)]$
(B) No

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\left(\forall x \left[\exists y [B(x, y, z)]\right] \implies \exists y [B(\underline{c}, y, z)]\right)$$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\Big(\forall x \big[\exists y [B(x, y, z)] \big] \implies \exists y [B(\underline{c}, y, z)] \Big)$$

(A) Yes —there are no variables in the term <u>c</u>(B) No

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

$$\Big(\forall x \big[\exists y [B(x, y, z)] \big] \implies \exists y [B(f(x, y), y, z)] \Big)$$

Axiom 4: \vdash ($\forall x[A(x)] \implies A(t)$), Provided that: x can be replaced by term t in A(x)

- For every variable v in term t...
- ... x must not occur free within the scope of a $\forall v$ or $\exists v$ in A(x)

Examples

Is the following a correct instance of Axiom 4?

$$\left(\forall x [\exists y [B(x, y, z)]] \implies \exists y [B(f(x, y), y, z)] \right)$$

(A) Yes
(B) No —x occurs free in the scope of ∃y, and y is a variable in the term f(x, y)

Multiple Choice Question

Axiom 5:
$$\vdash$$
 $(\forall x[(A \implies B)] \implies (A \implies \forall x[B])),$
Provided that: x does not occur free in A

Is the following a correct instance of Axiom 5?

$$\Big(\forall x \Big[\big(\exists y [A(x,y)] \implies B(x) \big) \Big] \implies \big(\exists y [A(x,y)] \implies \forall x [B(x)] \big) \Big)$$

Abbreviations and Notation

Definitions

Like in propositional logic, we use the following abbreviations

$(A \wedge B)$	abbreviates	$\neg(A \implies \neg B)$
$(A \lor B)$	abbreviates	$(\neg A \implies B)$
$(A \iff B)$	abbreviates	$\neg((A \Longrightarrow B) \Longrightarrow \neg(B \Longrightarrow A))$

Additionally,

$$\exists x[W]$$
 abbreviates $\neg \forall x[\neg W]$

Metatheorems

Theorem (Soundness) If: *A* is logically valid Then: ⊢ *A*

Theorem (Completeness) If: ⊢ A Then: A is logically valid

Theorem (The Deduction Theorem)

If: $G_1, G_2, \ldots, G_n, A \vdash B$ *Provided that: in the proof, there are no applications of Universal Generalization to any free variables in A*

Then: $G_1, G_2, \ldots, G_n \vdash (A \Longrightarrow B)$

Does the converse of the Deduction Theorem still hold?

- (A) Yes
- (B) No