Sets CS 130

Alex Vondrak

ajvondrak@csupomona.edu

Winter 2012

Sets

Definition

A set is an unordered collection of objects in which no object appears twice.

A set can be defined by enumerating its elements as a comma-separated list enclosed with curly braces.

Examples

• {0,1}	(a set of two elements,	0 and 1, in no	particular order)
---------	-------------------------	----------------	-------------------

- $\{1,0\}$ (a set of two elements, 0 and 1, in no particular order)
- {red, green, blue}
- {Ronnie James Dio}
- {Ronnie, James, Dio}

(a set of three elements—colors)

(a set of one element—a person)

(a set of three names)

- Can a set have zero elements?
 - (A) Yes
 - (B) No
- ② Can a set contain other sets?
 - (A) Yes
 - (B) No
- Scan a set have an infinite number of elements?
 - (A) Yes
 - (B) No

Definition

The empty set is the set with no elements in it, $\{ \}$

Danger, Will Robinson!

You'll often see $\{ \}$ denoted \varnothing

- That is, $\{ \} = \emptyset$
- To avoid confusion, I'll always use the explicit notation $\{ \}$
- I can't promise the same thing of your textbook

So, just to be clear...

Is the set

 $\{\emptyset\}$

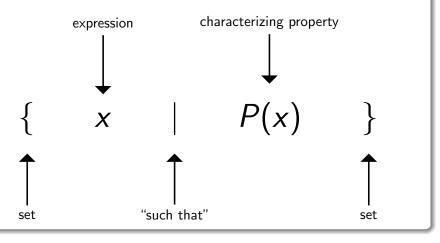
the same thing as the empty set?

- (A) No
- (B) Do not want
- (C) Absolutely not
- (D) **NOO**000000...

Set-Builder Notation

Definition

A set can be defined using a characterizing property in set-builder notation.



How many elements are in the following set, S?

$$S = \{x \mid x \text{ is an integer} \land 3 < x \le 7\}$$

- (A) 0
- (B) 4
- (C) 5
- (D) Infinitely many

What is another way of writing the following set, S?

$$S = \{8, 6, 7, 5, 3, 0, 9\}$$

(A)
$$S = \{x \mid x \text{ is a natural number} \land x < 10\}$$

(B) $S = \{x \mid x = 8 \land x = 6 \land x = 7 \land x = 5 \land x = 3 \land x = 0 \land x = 9\}$
(C) $S = \{|\sqrt{x}| \mid x = 0 \lor x = 9 \lor x = 25 \lor x = 36 \lor x = 49 \lor x = 64 \lor x = 81\}$
(D) $S = \{x^2 \lor x \mid x = 0 \lor x = 3 \lor x = 5 \lor x = 6 \lor x = 7 \lor x = 8\}$

What is another way of writing the following set, S?

$$S = \{x^2 \mid x \text{ is a natural number} \land x < 5\}$$

(A)
$$S = \{0^2, 1^2, 2^2, 3^2, 4^2\}$$

(B) $S = \{0, 1, 4, 9, 16\}$
(C) $S = \{x^2 \mid x \text{ is an integer} \land 0 \le x < 5\}$
(D) All of the above

Basic Notation

Definition (Membership Notation)

$a \in A$	(object <i>a</i> is a member (or an element) of set <i>A</i>)
$a \notin A$	(object a is not a member of set A)

Definitions (Set Comparisons)

For arbitrary sets A and B, we can make the following comparisons:

A = B	\iff	$\forall x[x \in A \iff x \in B]$	(equal)
$A \subseteq B$	\iff	$\forall x[x \in A \implies x \in B]$	(subset)
$A \supseteq B$	\iff	$\forall x[x \in B \implies x \in A]$	(superset)
$A \subset B$	\iff	$A\subseteq B\wedge A eq B$	(proper subset)
$A \supset B$	\iff	$A\supseteq B\wedge A eq B$	(proper superset)

Which of the following correctly defines set-builder notation?

(A) $S = \{x \mid P(x)\}$	\iff	$\forall x[P(x) \iff x \in S]$
(B) $S = \{x \mid P(x)\}$	\iff	$\forall x[P(x) \implies x \in S]$
(C) $S = \{x \mid P(x)\}$	\iff	$\forall x[P(x) \iff x \in S]$
(D) $S = \{x \mid P(x)\}$	\iff	$\forall x[\neg P(x) \implies x \notin S]$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$B \subseteq C$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$B \subset A$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$A \subseteq C$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$26 \in C$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{11, 12, 13\} \subseteq A$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{11, 12, 13\} \subset C$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{12\} \in B$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{12\} \subseteq B$$

Let

$$A = \{x \mid x \text{ is a natural number} \land x \ge 5\}$$

$$B = \{10, 12, 16, 20\}$$

$$C = \{x \mid \exists y[y \text{ is a natural number} \land x = 2y]\}$$

Is the following true or false?

 $\{x \mid x \text{ is a natural number } \land x < 20\} \not\subseteq B$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$5 \subseteq A$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{\{\}\} \subseteq B$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{ \} \subseteq A$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{ \} \subseteq B$$

Let

$$\begin{aligned} A &= \{x \mid x \text{ is a natural number} \quad \land \quad x \geq 5 \} \\ B &= \{10, 12, 16, 20 \} \\ C &= \{x \mid \exists y [y \text{ is a natural number} \quad \land \quad x = 2y] \} \end{aligned}$$

Is the following true or false?

$$\{ \} \subseteq C$$

Let $A = \{$ red, green, blue $\}$. How many different subsets does A have?

(A) 3
(B) 6
(C) 8

(D) None of the above

Let *A* be a set with *n* different elements. How many different subsets does *A* have?

```
(A) n
(B) 2n
(C) 2(n+1)
(D) 2<sup>n</sup>
```

Definition

The cardinality of a set A is the number of elements within A. Denoted |A| (or sometimes ||A||).

Definition

Let A be an arbitrary set. The power set of A, denoted $\wp(A)$, is the set of all subsets of A. That is,

$$\wp(A) = \{B \mid B \subseteq A\}$$

What is $|\wp(A)|$ for any arbitrary set, A?

- (A) 2|A|
- (B) 2^{|A|}
- (C) $|A|^2$
- (D) None of the above

Definition

Conceptually, any set A can be considered a subset of a universal set, U. That is, $A \in \wp(U)$.

The complement of a set A is the set of all things not included in A. In set-builder notation,

$$\overline{A} = \{x \mid x \in U \land x \notin A\}$$

Suppose $U = \{ red, yellow, green, blue \}$.

Let $A = {red, green}$.

What is \overline{A} ?

(A) {}

(B) {yellow, blue}

- (C) $\{\{\}, \{\text{yellow}\}, \{\text{blue}\}\}$
- (D) $\{red, yellow, green, blue\}$

Common Notation

Definitions (Well-Known Sets)

$$\mathbb{N} = \{x \mid x \text{ is a natural number}\}\$$

$$= \{0, 1, 2, ...\} \text{ (sometimes without 0)}\$$

$$\mathbb{Z} = \{x \mid x \text{ is an integer}\}\$$

$$= \{..., -2, -1, 0, 1, 2, ...\}\$$

$$\mathbb{Q} = \{x \mid x \text{ is a rational number}\}\$$

$$\mathbb{R} = \{x \mid x \text{ is a real number}\}\$$

$$\mathbb{C} = \{x \mid x \text{ is a complex number}\}\$$

Note

To save space, you often see notation like $\forall x \in \mathbb{N}[...]$ instead of $\forall x [x \in \mathbb{N} \implies ...]$

 $\mathbb{Q} = \{x \mid x \text{ is a rational number}\}$

Which of the following is an equivalent way of writing \mathbb{Q} ?

(A)
$$\mathbb{Q} = \{x/y \mid x \in \mathbb{N} \land y \in \mathbb{N}\}$$

(B)
$$\mathbb{Q} = \{x/y \mid x \in \mathbb{Z} \land y \in \mathbb{Z}\}$$

(C)
$$\mathbb{Q} = \{x/y \mid x \in \mathbb{Z} \land y \in \mathbb{Z} \land y \neq 0\}$$

(D) None of the above

Let

. . .

$$A = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N} [x = 8y]\}$$
$$B = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N} [x = 4y]\}$$

Proof $(A \subseteq B)$.

How do we prove $A \subseteq B$?

(A) Let x be an arbitrary element of B; show x must be in A

- (B) Show that A = B
- (C) Show that $B \not\subseteq A$
- (D) None of the above

Let

$$A = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N}[x = 8y]\}$$
$$B = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N}[x = 4y]\}$$

Proof $(A \subseteq B)$.

Consider an arbitrary $x \in A$. By the definition of A, $x \in \mathbb{N}$ and there is some constant $y \in \mathbb{N}$ such that x = 8y. Thus...

Where should we go next?

- (A) Conclude that $x \in B$
- (B) Show that x = 4y

(C) Show that
$$\exists y[x = 4y]$$

(D) Show that
$$x \in \mathbb{N}$$

Let

$$A = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N} [x = 8y]\}$$
$$B = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N} [x = 4y]\}$$

Proof $(A \subseteq B)$.

Consider an arbitrary $x \in A$. By the definition of A, $x \in \mathbb{N}$ and there is some constant $y \in \mathbb{N}$ such that x = 8y. Thus, $x = 4 \cdot 2 \cdot y$, so x is also a multiple of 4 (because $2y \in \mathbb{N}$). Therefore, ...

Where should we go next?

(A) Conclude that $x \in B$ (B) Conclude that x = 4y(C) Conclude that $\exists y[x = 4y]$ (D) Conclude that $x \subseteq B$

Proofs Involving Sets

Let

$$A = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N}[x = 8y]\}$$
$$B = \{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N}[x = 4y]\}$$

Proof $(A \subseteq B)$.

Consider an arbitrary $x \in A$. By the definition of A, $x \in \mathbb{N}$ and there is some constant $y \in \mathbb{N}$ such that x = 8y. Thus, $x = 4 \cdot 2 \cdot y$, so x is also a multiple of 4 (because $2y \in \mathbb{N}$). Therefore, $x \in B$. Since x was arbitrary, $A \subseteq B$. Suppose we wanted to prove two sets A and B were equal. I.e.,

$$A = B$$

How should we do that?

- (A) Assume $x \in A$, show $x \in B$
- (B) Assume $x \in B$, show $x \in A$
- (C) Use a series of equivalences
- (D) Show both (A) and (B)

$$A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$$

Proof.

Which method do you think is going to be easiest here?

- (A) Show the \subseteq and \supseteq directions
- (B) Use a chain of equivalences
- (C) Both of the above
- (D) None of the above

$$A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$$

Proof.

(⊆) ... (⊇) ...

How do we show the $A \subseteq B$?

- (A) Assume $a \in A$, show $a \in B$
- (B) Use a chain of equivalences
- (C) Assume $b \in B$, show $b \in A$
- (D) Use a known fact from algebra

$$A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$$

```
Proof.

(\subseteq) Consider an arbitrary a \in A. ...

(\supseteq) ...
```

How do we show the $A \supseteq B$?

- (A) Assume $a \in A$, show $a \in B$
- (B) Use a chain of equivalences
- (C) Assume $b \in B$, show $b \in A$
- (D) Use a known fact from algebra

$$A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$$

Proof.

(⊆) Consider an arbitrary $a \in A$ (⊃) Consider an arbitrary $b \in B$

What does $a \in A$ give us?

(A) $a \in \mathbb{N}$ (B) $a^2 < 15$ (C) 2a < 7(D) Both (A) and (B)

$$A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$$

Proof.

(⊆) Consider an arbitrary a ∈ A. Then a ∈ N and a² < 15. ...
 (⊇) Consider an arbitrary b ∈ B. ...

What are the only possible values for a?

(A) 0, 1, 2
(B) 0, 1, 2, 3
(C) 0, 1, 2, 3, 4
(D) 0, 1, 2, 3, 4, 5

$$A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$$

Proof.

- (⊆) Consider an arbitrary a ∈ A. Then a ∈ N and a² < 15. Because of these, a could only possibly be a natural number 0–3. . . .</p>
- (\supseteq) Consider an arbitrary $b \in B$

How do we know 2a < 7?

- (A) 2a < 7 for all possible values of a
- (B) We could prove it by induction on a
- (C) $a^2 < 15 \implies a < \sqrt{15}$

(D) We don't; this isn't what we want to conclude

 $A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$

Proof.

- (⊆) Consider an arbitrary $a \in A$. Then $a \in \mathbb{N}$ and $a^2 < 15$. Because of these, *a* could only possibly be a natural number 0–3. The double of any of these numbers is less than 7, so $a \in B$.
- (\supseteq) Consider an arbitrary $b \in B$

```
What does b \in B give us?

(A) a \in B

(B) 2a < 7

(C) 2b < 7

(D) None of the above
```

A Convoluted Example

 $A = \{x \mid x \in \mathbb{N} \land x^2 < 15\} = B = \{x \mid x \in \mathbb{N} \land 2x < 7\}$

Proof.

- (⊆) Consider an arbitrary $a \in A$. Then $a \in \mathbb{N}$ and $a^2 < 15$. Because of these, *a* could only possibly be a natural number 0–3. The double of any of these numbers is less than 7, so $a \in B$.
- (⊇) Consider an arbitrary b ∈ B. Then b ∈ N and 2b < 7. Because of these, b could only possibly be a natural number 0–3. The square of any of these numbers is less than 15, so b ∈ A.

How does the same "two direction" strategy apply to proving something of the following form?

$$A \iff B$$

- (A) Proving $A \iff B$ shows that A = B(B) To prove $A \iff B$, first show $A \implies B$, then show $B \implies A$ (C) To prove $A \iff B$, first show $A \subseteq B$, then show $B \subseteq A$
- (D) None of the above

We needn't necessarily use the "two direction" style proof. We might be able to just use a series of equivalences.

Proof $(A = B \iff (A \subseteq B) \land (B \subseteq A))$.

$$A = B \iff \dots$$
 (defn =)

Instead of having the \implies / \iff cases, we could replace A = B with its definition.

What was the definition of A = B?

(A)
$$\forall x [A \subseteq B \land B \subseteq A]$$

(B) $\forall x [x \in A \implies x \in B]$
(C) $\forall x [x \in A \iff x \in B]$
(D) $\forall x [x \in A \iff x \in B]$

We needn't necessarily use the "two direction" style proof. We might be able to just use a series of equivalences.

Proof $(A = B \iff (A \subseteq B) \land (B \subseteq A))$.

$$A = B \iff \forall x [x \in A \iff x \in B]$$
 (defn =)
 $\iff \dots$ ("Biconditional Exchange")

How can we change the " \iff " inside the $\forall x[\ldots]$? (A) $\forall x[(A \subseteq B) \implies (B \subseteq A)]$ (B) $\forall x[(x \in A \implies x \in B) \land (x \in B \implies x \in A)]$ (C) $\forall x[(x \in A \implies x \in B) \land (x \in B \iff x \in A)]$ (D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu)

Proof
$$(A = B \iff (A \subseteq B) \land (B \subseteq A))$$
.
 $A = B \iff \forall x [x \in A \iff x \in B]$ (defn =)
 $\iff \forall x [(x \in A \implies x \in B) \land (x \in B \implies x \in A)]$
("Biconditional Exchange")
 $\iff \forall x [x \in A \implies x \in B] \land \forall x [x \in B \implies x \in A]$
(unproven result ③)
 $\iff \dots$ (defn \subseteq, \supseteq)

What can we conclude?

(A)
$$(A \subseteq B) \land (B \subseteq A)$$

(B) $(A \subseteq B) \land (B \supseteq A)$
(C) $(A \supseteq B) \land (B \subseteq A)$
(D) $(A \supseteq B) \land (B \supseteq A)$

 $\mathsf{Proof}\;(A=B\quad\iff\quad(A\subseteq B)\wedge(B\subseteq A)).$

$$A = B$$

$$\iff \forall x [x \in A \iff x \in B]$$

$$\iff \forall x [(x \in A \implies x \in B) \land (x \in B \implies x \in A)]$$

$$\iff \forall x [x \in A \implies x \in B] \land \forall x [x \in B \implies x \in A]$$

$$\iff (A \subseteq B) \land (B \subseteq A)$$

Definitions

From two arbitrary sets A and B, we can form any of the following new sets.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$
(union)

$$A \cap B = \{x \mid x \in A \land x \in B\}$$
(intersection)

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$
(set difference)

$$A \Delta B = (A \setminus B) \cup (B \setminus A)$$
(symmetric difference)

Let the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Furthermore, let

$$A = \{1, 2, 3, 5, 10\}$$
$$B = \{2, 4, 7, 8, 9\}$$
$$C = \{5, 8, 10\}$$

What is the value of the following?

 $A \cup B$

Let the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Furthermore, let

$$A = \{1, 2, 3, 5, 10\}$$
$$B = \{2, 4, 7, 8, 9\}$$
$$C = \{5, 8, 10\}$$

What is the value of the following?

 $A \cap B$

Let the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Furthermore, let

$$A = \{1, 2, 3, 5, 10\}$$
$$B = \{2, 4, 7, 8, 9\}$$
$$C = \{5, 8, 10\}$$

What is the value of the following?

 $A \Delta B$

Let the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Furthermore, let

$$A = \{1, 2, 3, 5, 10\}$$
$$B = \{2, 4, 7, 8, 9\}$$
$$C = \{5, 8, 10\}$$

What is the value of the following?

 $A \setminus C$

- (A) $\{1, 2, 3, 8, 10\}$
- **(B)** {1, 2, 3}
- (C) $\{1, 2, 3, 8\}$
- (D) None of the above

Let the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Furthermore, let

$$A = \{1, 2, 3, 5, 10\}$$
$$B = \{2, 4, 7, 8, 9\}$$
$$C = \{5, 8, 10\}$$

What is the value of the following?

 $\overline{B} \cap (A \cup C)$

- (A) $\{1, 3, 5, 6, 10\}$
- (B) $\{1, 2, 3, 5, 8, 10\}$
- (C) {1,3,5,10}
- (D) None of the above

Tuples & Cross Products

Definition

An n-tuple is an ordered sequence of n objects. n-tuples are written by listing the n objects within parentheses separated by commas.

Definition

The cross product (or Cartesian product) of two sets, A and B, is the set of 2-tuples:

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$