CS 210 Homework 6

Alex Vondrak

DUE: Monday, May 14, 2012

- 1. (a) Construct a circuit that implements a 1-bit half adder using XOR and NAND gates.
 - (b) Give the Boolean expressions implemented by each output of your circuit diagram.
 - (c) Give a truth table for your Boolean expressions.
- 2. (a) Construct a circuit that implements a 1-bit full adder using XOR and NAND gates.
 - (b) Give the Boolean expressions implemented by each output your circuit diagram.
 - (c) Give a truth table for your Boolean expressions.
- 3. (a) Construct a circuit that implements a 4-bit magnitude comparator having three outputs (x, y, and z). That is, given two 4-bit inputs $A_4A_3A_2A_1$ and $B_4B_3B_2B_1$,

if $A_4A_3A_2A_1 = B_4B_3B_2B_1$, x = 1; otherwise, x = 0if $A_4A_3A_2A_1 < B_4B_3B_2B_1$, y = 1; otherwise, y = 0if $A_4A_3A_2A_1 > B_4B_3B_2B_1$, z = 1; otherwise, z = 0

Use the adder-subtractor from page 39 of the notes, inverters, and AND gates.

(b) Test the circuit's operation by setting $A_4A_3A_2A_1 = 1001$ and giving a truth table showing your outputs (x, y, and z) for all possible assignments to $B_4B_3B_2B_1$.