CS 210 Multiple Choice Quiz 2

Alex Vondrak

Spring 2012

1. Which line is wrong in the following truth table?

	a	b	$\left(\left((b\cdot (a')')\cdot ((b+(b+a))+a')\right)\cdot b\right)$
\mathbf{A}	0	0	0
\mathbf{B}	0	1	1
\mathbf{C}	1	0	0
D	1	1	1

2. In general, Boolean operators may have many similarities with all sorts of more familiar functions from "normal" algebra.

Which of the following correctly characterizes the behaviors of AND and OR?

- **A** $x \cdot y = \min(x, y); x + y = \max(x, y)$ **B** $x \cdot y = \max(x, y); x + y = \min(x, y)$ **C** $x \cdot y = x \mod y; x + y = x^y$ **D** $x \cdot y = x^y; x + y = x \mod y$
- $\mathbf{D} = x + y x + y x \mod y$
- 3. Which of the following best describes the behavior of XOR?
 - A $x \oplus y$ is similar to (x + y) in "normal" algebra
 - **B** $x \oplus y$ is similar to (x y) in "normal" algebra
 - **C** $x \oplus y$ is similar to $x \neq y$
 - **D** All of the above
- 4. We've said that Boolean algebra has a property of *duality*, whereby an equation $e_1 = e_2$ will have the same truth value when we take the *dual* of expressions e_1 and e_2 . That is, we interchange \cdot s and +s along with 1s and 0s.

However, suppose we had the "field" definition of Boolean algebra, which instead uses \cdot and \oplus . Does duality hold if we instead interchange \cdot s with \oplus s?

- A Yes, the duality of AND/OR guarantees the duality of AND/XOR
- **B** Yes, any pair of distinct binary operators in Boolean algebra are dual to each other
- C No, because fields can't have duality
- D No, AND and XOR do not happen to work that way together
- 5. Which of the following equations is true?

A
$$((a+b)+(a+b')(a+b)')((a+b)+(a+b')(a+b)')' = (a'+b')$$

B ((a+b) + (a+b')(a+b)')(a'+b') = ((a+b) + (a+b')(a+b)')'

C
$$(a+b)((a+b)+(a+b')(a+b)') = (a+b)$$

- **D** None of the above
- 6. We say that op_1 distributes over op_2 if $x op_1 (y op_2 z) = (x op_1 y) op_2 (x op_1 z)$. What can we say about the AND and XOR operators of of Boolean algebra?
 - ${f A}$ AND distributes over XOR
 - ${f B}$ XOR distributes over AND
 - ${\bf C}\,$ Both of the above
 - ${\bf D}\,$ None of the above