CS 210 Multiple Choice Quiz 3

Alex Vondrak

Spring 2012

Consider the following Karnaugh Map of some Boolean expression, e, with don't-care conditions:

ab	00	01	11	10
00	X	0	X	1
01	Х	0	X	X
11	Х	X	0	0
10	1	X	0	Х

1. Do the indicated implicants form a minimal set of prime implicants which covers e?

A Yes, the implicants are of maximum size and satisfy e

 ${\bf B}\,$ No, the don't care conditions cause some problems

 \mathbf{C} No, there is a smaller set of prime implicants which covers e

 ${\bf D}\,$ None of the above

- 2. Which of the following is **not** a suitable Boolean expression for e?
 - $\mathbf{A} \ ab'c'd' + a'b'cd'$
 - $\mathbf{B} \ c'd' + a'c$
 - $\mathbf{C} (ab+d)'$
 - ${\bf D}\,$ None of the above
- 3. Which of the following expressions is an acceptable minimum-literal product of sums form for e?
 - **A** ((a'+b')(d))
 - $\mathbf{B} \ (b+d)'$
 - **C** ((a + d')(a' + c'))

 ${\bf D}\,$ None of the above

4. Which of the following is the most accurate statement about a Boolean expression written in both *sum of products* and *inverted sum of products* form?

- A The inverted sum of products form and the sum of products form are equivalent
- ${\bf B}\,$ The inverted sum of products form is equivalent to the sum of products form modulo DeMorgan's Law
- ${f C}$ The inverted sum of products form is the dual of the sum of products form
- **D** The inverted sum of products form is the complement of the sum of products form

5. Which of the following two-level circuits could be used to implement the Boolean expression ab'cd'?

${f A}$ AND-OR	${f B}$ OR-AND	${f C}$ AND-AND	${f D}$ NAND-NAND
a		1 1.1.1	

- 6. Suppose you receive the data 1011101010, which you assume has a parity bit placed somewhere in the sequence. Do you accept this message as error-free or reject it as corrupted?
 - ${\bf A}$ Accept it; the bits XOR together to 0
 - **B** Accept it; the parity bit is right
 - C Reject it; the parity bit is wrong
 - **D** Can't say; we don't know where the parity bit is