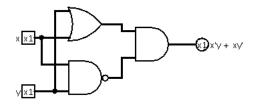
CS 210 Midterm Exam

Alex Vondrak

Spring 2012

Solve the following problems. Show all of your work. Clearly indicate your final answers (e.g., by boxing them).


- 1. Convert $(543.21)_{10}$ to base 15, showing fractional digits exactly.
- 2. Consider subtracting the following binary numbers.

	0	0	1	1	0	1	0
_	1	0	1	1	1	0	1

- (a) Assuming the numbers are unsigned, compute the difference using diminished radix complement subtraction.
- (b) Assuming the numbers are in signed 2's complement form, compute the difference using signed 2's complement arithmetic.
- 3. What is the value of the binary number $(101100)_2$ in each of the following interpretations?
 - (a) Unsigned (b) Signed magnitude (c) Signed 1's complement (d) Signed 2's complement
- 4. Consider the Boolean equation

$$y + x'z + (y' + z)(y' + z') = 1$$

- (a) What is the value of the equation?
- (b) Give the dual of the equation.
- (c) Algorithmically convert the Boolean expression on the left-hand side of the equation (the *LHS*) into its canonical sum of minterms form. Show your work.
- (d) Convert the LHS into its canonical product of maxterms form.
- (e) Give a Karnaugh map for the LHS.
- 5. Use algebraic inference to prove that the following logic circuit implements an exclusive-OR operation (denoted $x \oplus y$), which is defined by $x \oplus y = x'y + xy'$.

