
CS 240
Data Structures and Algorithms I

Alex Vondrak

ajvondrak@csupomona.edu

September 26, 2011

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 1 / 12



Today’s Lecture

1 Clarifications

What was the meaning of the weighted average percentage?
Are late penalties “flat”?
Is Java required?
What were the corresponding chapters of CLRS?

2 The Role of Data Structures

Case study: arrays

3 The Role of Algorithms

Case study: searching

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 2 / 12



Questions From Last Time
Weighted Average Percentages

The weighted average percentage is just a regular average, where
assignments are weighted as in the syllabus∑(

weighti ×
(
scorei
maxi

− penaltyi

))
∑

weighti︸ ︷︷ ︸
= 100% at end of quarter

where

penaltyi =


0 if assignment i is on time

10(n + 1)% if 0 ≤ n ≤ 9

100% if n ≥ 10

and n = # school days properly between the submission & due dates

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 3 / 12



Questions From Last Time
Late Penalties

Note that late penalties are “additive” (i.e., “flat”), like

scorei
maxi

− penaltyi

not “multiplicative”, like

scorei
maxi

− penaltyi ×
scorei
maxi

=
scorei
maxi

× (1− penaltyi )

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 4 / 12



Questions From Last Time
Programming Language

Java will be required for the programming projects:

Cal Poly’s official instructional language

Course topics depend on Java (e.g., generics)

Project grades should be apples-to-apples

Languages like C++ are similar enough that you don’t gain much by
using them

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 5 / 12



Questions From Last Time
CLRS Reference Chapters

From the 2nd edition:

Arrays N/A—presumed background

Analysis Chapter 2.2, Chapter 3

Searching N/A—in the exercises

Generics N/A—not Java-based

Stacks Chapter 10.1

Queues Chapter 10.1

Linked lists Chapter 10.2

Recursion Chapter 2.3

Hashing Chapter 11

These appear to hold for the 3rd edition as well

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 6 / 12



Data Structure + Algorithm = Program

What is the point of this course?

Become a more proficient programmer

“Grab-bag” of common data structures & algorithms

The thought process for designing your own

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 7 / 12



Data Structures

data uncountable or plural noun

1. Plural form of “datum”; pieces of information

2. (collectively) information

3. A collection of object-units that are distinct from one another

structure noun, pl structures

1. a cohesive whole built up of distinct parts

2. the overall form or organization of something

3. a set of rules defining behavior

4. (computing) several pieces of data treated as a unit

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 8 / 12



Arrays

int[] array = new int[3];

for(int i = 0; i < array.length; i++)

array[i] = 100;

addr
0
4
...

...
256
260
264
268
272
276

...
...

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 9 / 12



Arrays

int[] array = new int[3];

for(int i = 0; i < array.length; i++)

array[i] = 100;

addr
0 256 ← array

4
...

...
256 int[] object
260 3 ← array.length

264 0 ← array[0]

268 0 ← array[1]

272 0 ← array[2]

276
...

...

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 9 / 12



Arrays

int[] array = new int[3];

for(int i = 0; i < array.length; i++)

array[i] = 100;

addr
0 256 ← array

4 0 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 0 ← array[1]

272 0 ← array[2]

276
...

...

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 9 / 12



Arrays

int[] array = new int[3];

for(int i = 0; i < array.length; i++)

array[i] = 100;

addr
0 256 ← array

4 1 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 100 ← array[1]

272 0 ← array[2]

276
...

...

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 9 / 12



Arrays

int[] array = new int[3];

for(int i = 0; i < array.length; i++)

array[i] = 100;

addr
0 256 ← array

4 2 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 100 ← array[1]

272 100 ← array[2]

276
...

...

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 9 / 12



Arrays

int[] array = new int[3];

for(int i = 0; i < array.length; i++)

array[i] = 100;

addr
0 256 ← array

4 3 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 100 ← array[1]

272 100 ← array[2]

276
...

...

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 9 / 12



Arrays
What Are They Good For?

Pros

They’re a simple way to represent collections

They map directly to computers’ memory structures

Contiguous chunks of memory make indexing as easy as

base + ‖word‖ × offset

Processors are highly optimized for array operations

Cons

Fixed size =⇒ less flexible

Certain operations are complex (e.g., insertion in the middle)

Too simplistic for many purposes

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 10 / 12



Algorithms

algorithm noun, pl algorithms; related: algorithmic, adj

1. A precise step-by-step plan for a computational procedure
that begins with an input value and yields an output value in
a finite number of steps

In Other Words

An algorithm is the way in which we solve a particular computational
problem. E.g., the searching problem:

Input: Any array of ints, plus a single int to search for.

Output: The value true if the int is an element of the array, or the
value false if it is not.

Any given input that satisfies the problem statement is called an instance
of the problem

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 11 / 12



Analysis of Algorithms

In general, we always want our algorithms to be

Efficient

Time
Space

Correct

For every problem instance, the algorithm halts with the expected
output

In reality, we often make trade-offs

Time versus space

Approximation algorithms for NP-complete problems (CS 331)

Randomized algorithms that run a small chance of being incorrect

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 September 26, 2011 12 / 12


