CS 240

Data Structures and Algorithms |

Alex Vondrak
ajvondrak@csupomona.edu

October 10, 2011

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011

1/8



]
Homework 1 Submission

@ Programming Projects

o Not yet assigned

o Submitted by email (no paper copy)

o Substantial enough to warrant compiling/running
o Homework

e Has been assigned
e Submitted on paper
o Can email proof you did the homework on a certain date

@ Must turn in identical paper copy next class session after your email
o “But what about the programming-related questions?”

@ They're short; | don't want a digital copy
@ Write them by hand or print them out

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 2/8



N —
A Correction

Previously said that, for constants ki, ko,

kaf(n) { ks € O(F)
X

Counterexample.

1
Fix k1, ka. Suppose f(n) = o

k1-1/n+k2€ O(l/n)
ky-1/n+ky<c-1/n (3¢ > 0,np > 0 and Vn > ng)
ki +kn<c
nS(C—kl)/kz
L]

v

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 3/8




What's The Big Deal About Constants?

Intuitively, constants still “wash out” in the cases we care about—along

with all the other less-significant terms

10100

n2

2n3
1000n° — 400
867-2"+n’>—n

“Necessity is the mother of invention™:

Alex Vondrak (ajvondrak@csupomona.edu) CS 240

M M M M M

o(1)
2

o
S|

)
)
0o(n®)
o(2")

0,0, 9 0, w, ...

(cf. CS 331)

October 10, 2011 4/8



N —
Data Structures

Data Structures
facilitate manipulate

Algorithms

@ In this class, we mostly study linear data structures
@ Collections of items tend to have common operations

e Adding elements
e Removing elements
o Querying for particular properties (membership, size, etc.)

@ ...But each operation raises its own questions

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011

5/8



Stacks

pop

Alex Vondrak (ajvondrak@csupomona.edu)

push(a)

push(b)

pop

CS 240

oo

push(c)

pop

October 10, 2011

6/8



Stacks
Methods

Stacks are defined by their insertion/deletion operators:
@ public void push(int item)
@ public int pop()

This makes stacks first-in, last-out (or FILO)

—
=last-in, first-out =LIF

]

Other common auxiliary methods:
@ public int top() <— or peek()
@ public boolean isEmpty()

@ public int size()

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 7/8



Stacks
Methods

Stacks are defined by their insertion/deletion operators:

@ public void push(int item)

@ public int pop() throws StackUnderflowException
This makes stacks first-in, last-out (or &Q)

=last-in, first-out =LIFO

Other common auxiliary methods:

@ public int top() throws StackUnderflowException
@ public boolean isEmpty()

@ public int size()

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011

7/8



Stacks
Abstract Data Type

interface Stack {
public void push(int item);
public int pop()
throws StackUnderflowException;
public int top()
throws StackUnderflowException;
public boolean isEmpty ();
public int size();

class SomeStackImplementation implements Stack {
/% must implement all the methods */
b

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 8/8



