
CS 240
Data Structures and Algorithms I

Alex Vondrak

ajvondrak@csupomona.edu

October 10, 2011

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 1 / 8



Homework 1 Submission

Programming Projects

Not yet assigned
Submitted by email (no paper copy)
Substantial enough to warrant compiling/running

Homework

Has been assigned
Submitted on paper
Can email proof you did the homework on a certain date

Must turn in identical paper copy next class session after your email

“But what about the programming-related questions?”

They’re short; I don’t want a digital copy
Write them by hand or print them out

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 2 / 8



A Correction

Previously said that, for constants k1, k2,

k1f (n) +k2︸︷︷︸
7

∈ O(f )

Counterexample.

Fix k1, k2. Suppose f (n) =
1

n
.

k1 · 1/n + k2 ∈ O (1/n)

k1 · 1/n + k2 ≤ c · 1/n (∃c > 0, n0 > 0 and ∀n ≥ n0)

k1 + k2n ≤ c

n ≤ (c − k1)/k2

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 3 / 8



What’s The Big Deal About Constants?

Intuitively, constants still “wash out” in the cases we care about—along
with all the other less-significant terms

10100 ∈ O(1)

n2 ∈ O(n2)

2n3 ∈ O(n3)

1000n5 − 400 ∈ O(n5)

867 · 2n + n2 − n ∈ O(2n)

“Necessity is the mother of invention”: O, Θ, Ω, o, ω, . . .
(cf. CS 331)

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 4 / 8



Data Structures

Data Structures

Algorithms

facilitate manipulate

In this class, we mostly study linear data structures

Collections of items tend to have common operations

Adding elements
Removing elements
Querying for particular properties (membership, size, etc.)

. . . But each operation raises its own questions

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 5 / 8



Stacks

push(a)
−−−−−−−→

pop
←−−−−

a

push(b)
−−−−−−−→

pop
←−−−−

b
a

push(c)
−−−−−−−→

pop
←−−−−

c
b
a

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 6 / 8



Stacks
Methods

Stacks are defined by their insertion/deletion operators:

public void push(int item)

public int pop()

This makes stacks first-in, last-out︸ ︷︷ ︸
≡last-in, first-out

(or FILO︸ ︷︷ ︸
≡LIFO

)

Other common auxiliary methods:

public int top() ←− or peek()

public boolean isEmpty()

public int size()

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 7 / 8



Stacks
Methods

Stacks are defined by their insertion/deletion operators:

public void push(int item)

public int pop() throws StackUnderflowException

This makes stacks first-in, last-out︸ ︷︷ ︸
≡last-in, first-out

(or FILO︸ ︷︷ ︸
≡LIFO

)

Other common auxiliary methods:

public int top() throws StackUnderflowException

public boolean isEmpty()

public int size()

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 7 / 8



Stacks
Abstract Data Type

interface Stack {

public void push(int item);

public int pop()

throws StackUnderflowException;

public int top()

throws StackUnderflowException;

public boolean isEmpty ();

public int size ();

}

class SomeStackImplementation implements Stack {

/* must implement all the methods */

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 October 10, 2011 8 / 8


