
CS 240
Data Structures and Algorithms I

Alex Vondrak

ajvondrak@csupomona.edu

November 14, 2011

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 14, 2011 1 / 5



Linked Lists

class List <E> {

private class Node <E> {

E data;

Node <E> link;

public Node(E data , Node <E> link) {

this.data = data;

this.link = link;

}

}

private Node <E> head;

// ...

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 14, 2011 2 / 5



Iterative Algorithms

We’re used to thinking in terms of iteration:

Set up initial state (variables, etc.)

Repeatedly perform a process until it reaches a desired goal

for-loops, while-loops, etc.

Example (toString method)

We’ve seen an iterative way to “step through” each element of a List<E>

in the LinkedList.java file.

Example (length method—Worked Out In Class)

Let’s implement the length method of the List<E> class iteratively.

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 14, 2011 3 / 5



Recursive Algorithms

Another natural way to think is in terms of recursion (or self-reference):

Start with base cases—the “simplest” cases that needn’t be defined
with self-reference

Recursive cases (or inductive cases) solve an instance of the problem
by referring to a “simpler” case of the same problem (until we reach a
base case)

Example (Recursive Multiplication)

We may define multiplication of nonnegative integers recursively:

m · 0 = 0 (base case)

m · n = m + m · (n − 1) (recursive case)

Example (length method—Worked Out In Class)

length can be defined recursively, too.

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 14, 2011 4 / 5



A Closer Look At Recursion

Internally, recursive methods are handled by stacks of call frames (or
activation records):

Every time a method is invoked, we allocate space to store

Input parameters
The return address
Local variables

Upon allocating the frame, we push it to the call stack

When we finish executing the method we

Restore certain portions of memory
Pop the activation record
Jump to the code at the frame’s return address

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 14, 2011 5 / 5


