
CS 240
Data Structures and Algorithms I

Alex Vondrak

ajvondrak@csupomona.edu

November 18, 2011

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 1 / 5

Patterns of Recursion

Definition (Tail Recursion)

A recursive call is in the tail position if it is the return value of the method.
If all calls are in the tail position, a method is said to be tail-recursive.

Example (Length)

Our recursive version of length was not tail-recursive.

public int length () { return length(head); }

private int length(Node <E> current) {

if (current == null)

return 0;

return 1 + length(current.link);

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 2 / 5

Patterns of Recursion

Definition (Tail Recursion)

A recursive call is in the tail position if it is the return value of the method.
If all calls are in the tail position, a method is said to be tail-recursive.

Example (Tail-Recursive Length)

public int length () { return length(head , 0); }

private int length(Node <E> current , int total) {

if (current == null)

return total;

return length(current.link , total + 1);

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 2 / 5

Patterns of Recursion

Definition (Fold)

A fold is a recursive way to replace the “structural” components of a data
structure with desired functions and values. Also known as reduce,
accumulate, compress, or inject.
Folds may either be left-associative or right-associative.

Example (Right Fold)

The linked list (1 2 3) can be built up by

new Node <Integer >(1,

new Node <Integer >(2,

new Node <Integer >(3, null)))

We can think of a right fold as replacing the new Node<Integer>s with a
specific function, and null with a specific value.

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 3 / 5

Iterative Folds

Left/right folds over linear sequences (like linked lists) can be understood
as the following iterative patterns

Example (Left Fold)

E accum = /* initial value */;

for(/* each element from left -to -right */) {

accum = f(accum , element);

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 4 / 5

Iterative Folds

Left/right folds over linear sequences (like linked lists) can be understood
as the following iterative patterns

Example (Right Fold)

E accum = /* initial value */;

for(/* each element from right -to -left */) {

accum = f(element , accum);

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 4 / 5

Recursive Folds

Recursively, left/right folds over linked lists have the following forms

Example (Right Fold)

E some_right_fold(Node <E> xs) {

if (xs == null) return /* initial value */;

return f(xs.data , some_right_fold(xs.link));

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 5 / 5

Recursive Folds

Recursively, left/right folds over linked lists have the following forms

Example (Left Fold)

E some_left_fold(Node <E> xs, E accum) {

if (xs == null) return accum;

return some_left_fold(xs.link ,

f(accum , xs.data));

}

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 18, 2011 5 / 5

