
CS 240
Data Structures and Algorithms I

Alex Vondrak

ajvondrak@csupomona.edu

November 30, 2011

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 1 / 7

Hash Tables

Take the idea of a hash function storing objects in an array. . .

. . . But use two distinct parameters (the key and value)

Before

data[hash(i)] = i;

After

data[hash(k)] = v;

(It gets a little trickier than this, though.)

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 2 / 7

Hash Tables

Example

Suppose we have the following key/value pairs:

38 7→ 31 16 7→ 14 47 7→ 15 15 7→ 92 53 7→ 65 90 7→ 35 29 7→ 89

keys

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

vals

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 3 / 7

Problems

Definition

A perfect hash function maps every key to a unique index.

Definition

A hash collision occurs when two keys get hashed to the same index.

Designing a hash function takes a lot of consideration

Uniformity
Efficiency
Predictability of results

What about non-integer keys?

Each Object comes with a hashCode method.
Roughly: data[hash(k.hashCode())] = v

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 4 / 7

Open Address Hashing

Idea: when there’s a collision, search ahead for a vacant spot.

Example

Suppose we have the following key/value pairs:

38 7→ 31 98 7→ 14 48 7→ 15 15 7→ 92 53 7→ 65 90 7→ 35 29 7→ 89

keys

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

vals

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 5 / 7

Chained Hashing

Idea: handle hash collisions by storing linked lists in the array

Example

Suppose we have the following key/value pairs:

38 7→ 31 98 7→ 14 48 7→ 15 15 7→ 92 53 7→ 65 90 7→ 35 29 7→ 89

vals

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 6 / 7

Time Analysis of Hashing

Worst-case: everything gets put at the same index (always a collision)

Searching for the proper key/value requires linear probing—O(n)

Average case: with a proper hash function, collisions are reduced

. . . But, it’s difficult to analyze

Analysis (Open Addressing)

In open-address hashing with linear probing, a nonfull hash table, and no
removals, the average number of table elemebts examined in a successful
search is approximately

1

2

(
1 +

1

1− α

)
where the load factor α =

elements stored in table

size of array

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 7 / 7

Time Analysis of Hashing

Worst-case: everything gets put at the same index (always a collision)

Searching for the proper key/value requires linear probing—O(n)

Average case: with a proper hash function, collisions are reduced

. . . But, it’s difficult to analyze

Analysis (Chained)

In chained hashing, the average number of table elements examined in a
successful search is approximately

1 +
α

2

Note here, though, that α can be > 1.

Alex Vondrak (ajvondrak@csupomona.edu) CS 240 November 30, 2011 7 / 7

