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In general, data structures can be implemented in many different ways. These ways will impact
the performance of the structure’s operators—some for the better, others for the worse. We must
therefore strike a balance between ease of implementation and efficiciency. While this homework
won’t give you a good idea of this balance, it will have you implement a data structure in an
outlandish way.

Using the generic ArrayStack<E> class developed during the lectures, you will implement a
queue. You must do this by having a class, TwoStackQueue<E>, that implements the following
generic interface:

1 interface Queue <E> {

2 public void enqueue(E item);

3 public E dequeue () throws QueueUnderflowException;

4 public E peek() throws QueueUnderflowException;

5 }

TwoStackQueue<E> must have two fields: private ArrayStack<E> main and
private ArrayStack<E> aux. main must hold the contents of the queue, and aux should
be used for temporary storage of elements (as needed) in your queue methods.

The I/O for this homework will just perform operations on an instance of type
TwoStackQueue<Integer> to ensure that you’ve implemented the methods correctly.

Input Format

Input consists of any number of whitespace-separated tokens. Hint: the next method of the
Scanner class will find and return the next complete token.

Output Format

Starting with an empty queue, you must evaluate each token and print a corresponding output.
A token will either be:

• The string "dequeue", in which case you should print dequeue = [result], where [result]
is the returned value of the dequeue method. If a QueueUnderflowException is thrown,
instead print Queue underflow..

• The string "peek", in which case you should print peek = [result], where [result] is the
returned value of the peek method. If a QueueUnderflowException is thrown, instead print
Queue underflow..
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• A string representing an integer, in which case you should enqueue it, and print
enqueue [the integer].

Hint: use methods of the Integer class (http://docs.oracle.com/javase/6/docs/api/
java/lang/Integer.html).

• None of the above, in which case you should print out Unrecognized operator: [the token].

After each such token is evaluated, print out a line with the contents of the queue from rear to
front. If the queue is empty, print [empty queue]. See the output sample.

Input Sample

1 2 3

peek

dequeue peek

dequeue

push 4

dequeue dequeue dequeue

Output Sample

enqueue 1

1

enqueue 2

2 1

enqueue 3

3 2 1

peek = 1

3 2 1

dequeue = 1

3 2

peek = 2

3 2

dequeue = 2

3

Unrecognized operator: push

3

enqueue 4

4 3

dequeue = 3

4

dequeue = 4

[empty queue]

Queue underflow.

[empty queue]
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