
CS 240 Homework 4

Alex Vondrak

Due: February 10, 2012

In general, data structures can be implemented in many different ways. These ways will impact
the performance of the structure’s operators—some for the better, others for the worse. We must
therefore strike a balance between ease of implementation and efficiciency. While this homework
won’t give you a good idea of this balance, it will have you implement a data structure in an
outlandish way.

Using the generic ArrayStack<E> class developed during the lectures, you will implement a
queue. You must do this by having a class, TwoStackQueue<E>, that implements the following
generic interface:

1 interface Queue <E> {

2 public void enqueue(E item);

3 public E dequeue () throws QueueUnderflowException;

4 public E peek() throws QueueUnderflowException;

5 }

TwoStackQueue<E> must have two fields: private ArrayStack<E> main and
private ArrayStack<E> aux. main must hold the contents of the queue, and aux should
be used for temporary storage of elements (as needed) in your queue methods.

The I/O for this homework will just perform operations on an instance of type
TwoStackQueue<Integer> to ensure that you’ve implemented the methods correctly.

Input Format

Input consists of any number of whitespace-separated tokens. Hint: the next method of the
Scanner class will find and return the next complete token.

Output Format

Starting with an empty queue, you must evaluate each token and print a corresponding output.
A token will either be:

• The string "dequeue", in which case you should print dequeue = [result], where [result]
is the returned value of the dequeue method. If a QueueUnderflowException is thrown,
instead print Queue underflow..

• The string "peek", in which case you should print peek = [result], where [result] is the
returned value of the peek method. If a QueueUnderflowException is thrown, instead print
Queue underflow..

1



• A string representing an integer, in which case you should enqueue it, and print
enqueue [the integer].

Hint: use methods of the Integer class (http://docs.oracle.com/javase/6/docs/api/
java/lang/Integer.html).

• None of the above, in which case you should print out Unrecognized operator: [the token].

After each such token is evaluated, print out a line with the contents of the queue from rear to
front. If the queue is empty, print [empty queue]. See the output sample.

Input Sample

1 2 3

peek

dequeue peek

dequeue

push 4

dequeue dequeue dequeue

Output Sample

enqueue 1

1

enqueue 2

2 1

enqueue 3

3 2 1

peek = 1

3 2 1

dequeue = 1

3 2

peek = 2

3 2

dequeue = 2

3

Unrecognized operator: push

3

enqueue 4

4 3

dequeue = 3

4

dequeue = 4

[empty queue]

Queue underflow.

[empty queue]

2


