
CS 240 Homework 6

Alex Vondrak

Due: February 24, 2012

When high-level code (e.g., Java) is translated into low-level machine instructions, we often
lose more details than we realize. The specifics depend on particular languages, machine architec-
tures, operating systems, etc. But a fairly common feature of high-level programming languages—
recursion—generally has to be implemented on the machine level using a call stack. The call stack
keeps track of every method call (not just recursive ones), but for our purposes, we’ll be looking at
how we can use a stack to keep track of recursive method invocations.

In this homework, you’ll simulate a call stack for two separate recursive definitions of the
factorial function (n! =

∏n
i=1 i = 1× 2× 3× · · · ×n). One of these definitions will be the “regular”

recursive definition that takes one parameter, and the other will be a tail-recursive version that
takes two. The process of writing Java code to simulate low-level machine code isn’t exactly
straightforward, so for this homework, much of the code will be provided for you: http://www.

csupomona.edu/~ajvondrak/cs/240/12/winter/hw/hw6.java. Notice a few things about this
code:

• The file begins with the LinkedStack<E> implementation, much like the one you were asked
to write for Homework 5 (hence this homework being posted a little late).

• The CallFrame class represents the data structure of the elements on the call stack. Every
time a method is invoked, a call frame is allocated and pushed to the stack. When a method
returns, the top frame (corresponding to the most recent method call) is popped. A call
frame contains data specific to the particular method invocation, including the values of local
variables and the point we’re at in executing the method (i.e., the location of the current
statement being executed).

• The FactorialSimulation class is where the various factorial function implementations live.
There are two as-of-yet unimplemented methods, and it is your job to implement them. This
is discussed below.

• Pretty much all the I/O has been taken care of for you in the Homework6 class.

So, what are you supposed to do with this code? Well, FactorialSimulation

has two sets of methods: public int factorial(int n) and public int run() corre-
spond to the straightforward non-tail-recursive definition of the factorial function, while
public int factorialTR(int n, int r) and public int runTR() correspond to the tail-
recursive version. Because of the similar forms, this gives you a chance to both translate Java
code into a simulation of the call stack, and to translate a simulation of the call stack into its
original Java code.

To this end, you must implement two methods:

1



• public int factorialTR(int n, int r), which must be a tail-recursive factorial imple-
mentation based on the simulation in public int runTR(). Include comments like the ones
in the given public int factorial(int n) definition that indicate what statements the
magic numbers1 in runTR correspond to.

• public int run(), which must be a call stack simulation of the recursive definition pro-
vided by public int factorial(int n). It will be very helpful to read the runTR code,
understand how it’s working, and mimic the general structure.

Input Format

Input consists of a series of Java ints, each representing a number n ≥ 1 whose factorial will
be calculated.

Output Format

Output is generally dictated by the provided code (as long as you call this.report() in all
the right places). See the Sample Output and the provided code.

Input Sample

Test against the ACID input available at http://www.csupomona.edu/~ajvondrak/cs/240/

12/winter/hw/hw6.in

Output Sample

Test against the ACID output available at http://www.csupomona.edu/~ajvondrak/cs/240/
12/winter/hw/hw6.out

1Don’t worry too much about the magic numbers in this assignment.

2


