Hashing
CS 240

Alex Vondrak

ajvondrak@csupomona.edu

Winter 2012

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 1/26

Hashing

Definition (Hash Function)

A function h: K — H that maps a large set of keys to a smaller set of
hash codes (or simply hashes)

@ For programming purposes, typically H = N—integers suitable for
array indices

@ In Java, the hashCode method of every Object returns an int

Example

In Java, the hash code of a String s with a length n is computed by

n—1
h(s) = g (s.charAt (i) x 31" 171)
i=0
”
Hashing

Winter 2012 2 /26

-
Perfect vs Imperfect Hashing

Definition (Collision)
A collision occurs when keys k; and ky hash to the same value, v

Definition (Perfect Hash Function)

A hash function that produces no collisions (i.e., a 1-1 function)

Example

A trivially perfect hash function maps the it element of K to just /:

nn H 0
||al| H 1

"aa" — 2

v

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 3 /26

-
Open-Address Hashing

Let’s populate the following array using the hash function h(n) = n % 10
to generate our indices

(0] (11 (21 (3] 1[4 (5] (el [7] [8] [9]
314 159 265 358 97 9323 84692

After populating, what happens if we search for, say, 2177
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =

(D)

We've tried every index, grow the array

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 4 /26

-
Open-Address Hashing

Let’s populate the following array using the hash function h(n) = n % 10
to generate our indices

o] [11 [2] (3] 1[4] (s8] ([e] [7]1 ([8] [9]
31 41 59 26 53 58 97 932

After populating, what happens if we search for, say, 271837
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =

(D)

We've tried every index, grow the array

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 5/ 26

-
Open-Address Hashing

Let’s populate the following array using the hash function h(n) = n % 10
to generate our indices

o] [11 [2] (3] 1[4] (s8] ([e] [7]1 ([8] [9]
10 20 30 40 50 60 70 80 91

After populating, what happens if we search for, say, 2717
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =

(D)

We've tried every index, grow the array

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 6 /26

Multiple Choice Question

In the best case, what is the complexity of inserting a value using
open-address hashing?

(A) Q(1)

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 7 /26

|
Multiple Choice Question

In the worst case, what is the complexity of inserting a value using
open-address hashing?

(A) O(1)

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 8 /26

Multiple Choice Question

How could an open-address hash implementation in Java compute the
index of an arbitrary Object o7

(A) o.hashCode()

(B) o.hashCode() % array.length

(C) Math.abs(o.hashCode()) % array.length
(D)

D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 9 /26

Multiple Choice Question

Suppose we want a hash table that works much like our
AssociationList<K, V>.

How should we modify this storage scheme to keep track of the two
items—the key and the value?

(A) Use two arrays—one for the keys, one for the values

(B) Hash the key for the index, store the value in the array
(C) Both of the above
(D)

D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Hashing

Winter 2012 10 / 26

Open-Address Hash Table

h(k) = k % 10

o] [11 [2] (31 1[4 (s8] ([e] [7]1 ([8] [9]

ol [11 [21 ([3] [4] ([5] [el [7] [8] [9]
38—+31 98— 14 48— 15 15+—92 53—65 90+—35 29+~ 89

After populating, what happens if we look up the key 487 587
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =
(D

) We've tried every index, grow the array

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 11 /26

Reducing Collisions

There are many ways to design a hash function & table structure. ..

Division Hash Function
@ What we've used so far (modular arithmetic)

o Certain table sizes work better for this: prime numbers of the form
4k + 3 (like 1231 = 4 x 307 + 3)

Mid-Square Hash Function

Return some middle digits of k2

Multiplicative Hash Function

Pick a ¢ such that 0 < ¢ < 1; return the first few fractional digits after
the decimal point in ¢ x k

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 12 /26

Reducing Collisions From Linear Probing

Definition (Linear Probing)

The demonstrated process of searching ahead for vacant spots in the array
one index at a time

v

Definition (Clustering)

When several different keys hash to the same location, elements tend to
cluster around each other, which is a problem (values aren't
well-distributed across the hash table)

Definition (Double Hashing)

Instead of look at the index (i + 1) % data.length for each failed
index i, we have a second hash function, and look at

(i + hash2(key)) % data.length

v

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 13 /26

Multiple Choice Question

Suppose we use double-hashing to start at index 0, but instead of linear
probing, our particular key has us “hop forward” by 2.

o] [11 [2] (31 ([4] (s8] (6] [7]1 ([8] [9]

What's the problem with this?
(A) It's inefficient

(B) If we search for the key later, we have to use linear probing
(C) We only probe half of the array, in this case
(D)

D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Hashing

Winter 2012 14 / 26

Multiple Choice Question

Suppose we use double-hashing to start at index 0, but instead of linear
probing, our particular key has us “hop forward” by 2.

(o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]
What's the problem with this?
(A) It's inefficient
(B) If we search for the key later, we have to use linear probing

(C) We only probe half of the array, in this case—since hash2 returns a
value that’s not relatively prime to data.length

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 14 / 26

-
Double Hashing

So sayeth Knuth:

@ For the data array, both the data.length and data.length - 2
must be prime (i.e., they're twin primes)

@ hashl(k) = Math.abs(k.hashCode()) % data.length
@ hash2(k) = 1 + (Math.abs(k.hashCode()) % (data.length - 2))

Then the double-hashing scheme returns a hash?2 that's relatively prime to
data.length

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 15 / 26

-
Chained Hashing

Definition
o Like open-addressing, store data in an array
@ Use hash function to generate index into array
@ Use an array of linked lists

@ When a hash collision occurs, simply add element to linked list

Note

To have an array of instances of a generic class, you need to have a cast
like

(Node<K, V>[]) new Node[10];

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 16 / 26

-
Chained Hashing

Use the hash function h(n) = n % 10
314 159 265 358 97 9323 84692

After populating, what happens if we search for, say, 2177
o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 17 / 26

-
Chained Hashing

Use the hash function h(n) = n % 10
31 41 59 26 53 58 97 932

After populating, what happens if we search for, say, 271837
o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 18 / 26

-
Chained Hashing

Use the hash function h(n) = n % 10
10 20 30 40 50 60 70 80

After populating, what happens if we search for, say, 2717
o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012

91

19 /26

Multiple Choice Question

In the best case, what is the complexity of inserting a value using chained
hashing? Looking up a value?

(A) Q(1)

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 20 / 26

Multiple Choice Question

In the worst case, what is the complexity of inserting a value using chained
hashing? Looking up a value?

(A) O(1)

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012

21 /26

-
Efficiency

Definition (Load Factor)

Number of elements in the table

T " The size of the table’s array

Open Addressing With Linear Probing

With a non-full array, no removals, and « < 1 the average number of
elements examined in a successful search is approximately

1 1
(1
2<+1—a>

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 22 /26

-
Efficiency

Definition (Load Factor)

~ Number of elements in the table
"~ The size of the table's array

Open Addressing With Double Hashing
With a non-full array, no removals, and « < 1 the average number of
elements examined in a successful search is approximately
—In(1—«)
«

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 22 /26

-
Efficiency

Definition (Load Factor)

_ Number of elements in the table
"~ The size of the table's array

Chained Hashing

The average number of elements examined in a successful search is
approximately

1+

N[o

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 22 /26

Multiple Choice Question

Definition (Load Factor)

Number of elements in the table
The size of the table's array

o =

What does it mean if o > 17

(A) The array is full of elements

B) It's impossible for a > 1

(B)
(C) The array needs to grow
(D)

D) Donald Knuth is angry

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 23 /26

-
Efficiency

Linear Probing

Double Hashing

Chained

0.5 1.0 1.5

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 24 / 26

.
Using Java's Hash Tables

docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

Example

import java.util.Hashtable;

Hashtable<String, Integer> env
new Hashtable<String, Integer>();
null not allowed!

env.put (null, null); // ERROR:
env.put("one", 1);
env.put("two", 2);

4

env.put("one", 100); // overwrites old
Integer one = env.get("one");
if (one !'= null) {
System.out.println("one =
}
FEEHE TRy

docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

.
Using Java's Hash Tables

docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

Example

import java.util.Map;
import java.util.HashMap;

Map<String, Integer> env =

new HashMap<String, Integer>();
null allowed

env.put(null, null); // OKAY:
env.put("one", 1);
env.put("two", 2);

env.put("one", 100); // overwrites old

Integer one = env.get("one");
if (ome != null) {
System.out.println("one =

}

Alex Vondrak (ajvondrak@csupomona.edu) Hashing

Winter 2012

.
26 / 26

docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

