Hashing CS 240

Alex Vondrak

ajvondrak@csupomona.edu

Winter 2012

Hashing

Definition (Hash Function)

A function $h: K \to H$ that maps a large set of keys to a smaller set of hash codes (or simply hashes)

- For programming purposes, typically $H = \mathbb{N}$ —integers suitable for array indices
- In Java, the hashCode method of every Object returns an int

Example

In Java, the hash code of a String $\, s \,$ with a length $\, n \,$ is computed by

$$h(\mathbf{s}) = \sum_{i=0}^{n-1} \left(\mathbf{s.charAt(i)} \times 31^{n-1-i} \right)$$

Perfect vs Imperfect Hashing

Definition (Collision)

A collision occurs when keys k_1 and k_2 hash to the same value, v

Definition (Perfect Hash Function)

A hash function that produces no collisions (i.e., a 1-1 function)

Example

A trivially perfect hash function maps the i^{th} element of K to just i:

$$""\mapsto 0$$

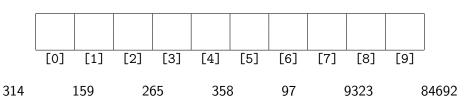
$$"a"\mapsto 1$$

$$"aa"\mapsto 2$$

$$\vdots$$

Open-Address Hashing

Let's populate the following array using the hash function h(n) = n % 10 to generate our indices

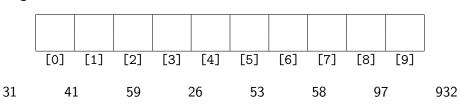


After populating, what happens if we search for, say, 217?

- (A) Insert element at empty index i =
- (B) Hash collision
- (C) Try at the next index, i =
- (D) We've tried every index, grow the array

Open-Address Hashing

Let's populate the following array using the hash function h(n) = n % 10 to generate our indices

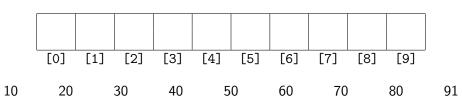


After populating, what happens if we search for, say, 27183?

- (A) Insert element at empty index i =
- (B) Hash collision
- (C) Try at the next index, i =
- (D) We've tried every index, grow the array

Open-Address Hashing

Let's populate the following array using the hash function h(n) = n % 10 to generate our indices



After populating, what happens if we search for, say, 271?

- (A) Insert element at empty index i =
- (B) Hash collision
- (C) Try at the next index, i =
- (D) We've tried every index, grow the array

In the best case, what is the complexity of inserting a value using open-address hashing?

- (A) $\Omega(1)$
- (B) $\Omega(\log n)$
- (C) $\Omega(n)$
- (D) $\Omega(n^2)$

In the worst case, what is the complexity of inserting a value using open-address hashing?

- (A) O(1)
- (B) $O(\log n)$
- (C) O(n)
- (D) $O(n^2)$

How could an open-address hash implementation in Java compute the index of an arbitrary Object o?

- (A) o.hashCode()
- (B) o.hashCode() % array.length
- (C) Math.abs(o.hashCode()) % array.length
- (D) None of the above

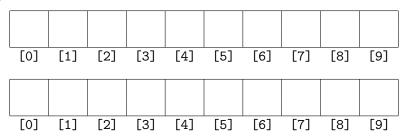
Suppose we want a hash table that works much like our AssociationList<K, V>.

How should we modify this storage scheme to keep track of the two items—the key and the value?

- (A) Use two arrays—one for the keys, one for the values
- (B) Hash the key for the index, store the value in the array
- (C) Both of the above
- (D) None of the above

Open-Address Hash Table

$$h(k) = k \% 10$$



$$38 \mapsto 31 \quad 98 \mapsto 14 \quad 48 \mapsto 15 \quad 15 \mapsto 92 \quad 53 \mapsto 65 \quad 90 \mapsto 35 \quad 29 \mapsto 89$$

After populating, what happens if we look up the key 48? 58?

- (A) Insert element at empty index i =
- (B) Hash collision
- (C) Try at the next index, i =
- (D) We've tried every index, grow the array

Reducing Collisions

There are many ways to design a hash function & table structure. . .

Division Hash Function

- What we've used so far (modular arithmetic)
- Certain table sizes work better for this: prime numbers of the form 4k + 3 (like $1231 = 4 \times 307 + 3$)

Mid-Square Hash Function

Return some middle digits of k^2

Multiplicative Hash Function

Pick a c such that 0 < c < 1; return the first few fractional digits after the decimal point in $c \times k$

Reducing Collisions From Linear Probing

Definition (Linear Probing)

The demonstrated process of searching ahead for vacant spots in the array one index at a time

Definition (Clustering)

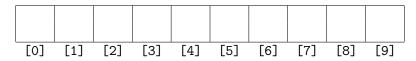
When several different keys hash to the same location, elements tend to cluster around each other, which is a problem (values aren't well-distributed across the hash table)

Definition (Double Hashing)

Instead of look at the index (i + 1) % data.length for each failed index i, we have a second hash function, and look at

(i + hash2(key)) % data.length

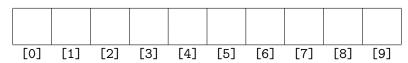
Suppose we use double-hashing to start at index 0, but instead of linear probing, our particular key has us "hop forward" by 2.



What's the problem with this?

- (A) It's inefficient
- (B) If we search for the key later, we have to use linear probing
- (C) We only probe half of the array, in this case
- (D) None of the above

Suppose we use double-hashing to start at index 0, but instead of linear probing, our particular key has us "hop forward" by 2.



What's the problem with this?

- (A) It's inefficient
- (B) If we search for the key later, we have to use linear probing
- (C) We only probe half of the array, in this case—since hash2 returns a value that's not relatively prime to data.length
- (D) None of the above

Double Hashing

So sayeth Knuth:

- For the data array, both the data.length and data.length 2
 must be prime (i.e., they're twin primes)
- hash1(k) = Math.abs(k.hashCode()) % data.length
- hash2(k) = 1 + (Math.abs(k.hashCode()) % (data.length 2))

Then the double-hashing scheme returns a hash2 that's relatively prime to data.length

Definition

- Like open-addressing, store data in an array
- Use hash function to generate index into array
- Use an array of linked lists
- When a hash collision occurs, simply add element to linked list

Note

To have an array of instances of a generic class, you need to have a cast like

```
(Node<K, V>[]) new Node[10];
```

Use the hash function h(n) = n % 10

314

159

265

358

97

9323

84692

After populating, what happens if we search for, say, 217?

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Use the hash function h(n) = n % 10

31

41

59

26

53

58

97

932

After populating, what happens if we search for, say, 27183?

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Use the hash function h(n) = n % 10

10

20

30

40

50

60

70

80

After populating, what happens if we search for, say, 271?

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

In the best case, what is the complexity of inserting a value using chained hashing? Looking up a value?

- (A) $\Omega(1)$
- (B) $\Omega(\log n)$
- (C) $\Omega(n)$
- (D) $\Omega(n^2)$

In the worst case, what is the complexity of inserting a value using chained hashing? Looking up a value?

- (A) O(1)
- (B) $O(\log n)$
- (C) O(n)
- (D) $O(n^2)$

Definition (Load Factor)

$$\alpha = \frac{\text{Number of elements in the table}}{\text{The size of the table's array}}$$

Open Addressing With Linear Probing

With a non-full array, no removals, and $\alpha < 1$ the average number of elements examined in a successful search is approximately

$$\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)$$

Definition (Load Factor)

$$\alpha = \frac{\text{Number of elements in the table}}{\text{The size of the table's array}}$$

Open Addressing With Double Hashing

With a non-full array, no removals, and $\alpha < 1$ the average number of elements examined in a successful search is approximately

$$\frac{-\ln(1-\alpha)}{\alpha}$$

Definition (Load Factor)

$$\alpha = \frac{\text{Number of elements in the table}}{\text{The size of the table's array}}$$

Chained Hashing

The average number of elements examined in a successful search is approximately

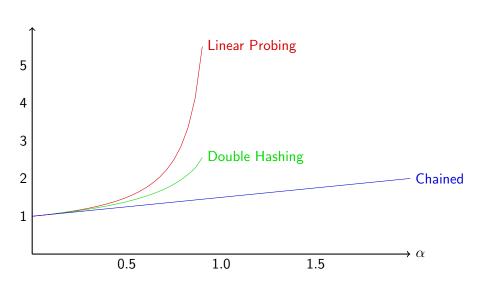
$$1+\frac{\alpha}{2}$$

Definition (Load Factor)

$$\alpha = \frac{\text{Number of elements in the table}}{\text{The size of the table's array}}$$

What does it mean if $\alpha \geq 1$?

- (A) The array is full of elements
- (B) It's impossible for $\alpha > 1$
- (C) The array needs to grow
- (D) Donald Knuth is angry



Using Java's Hash Tables

docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

```
Example
```

```
import java.util.Hashtable;
Hashtable < String, Integer > env =
   new Hashtable < String, Integer > ();
env.put(null, null); // ERROR: null not allowed!
env.put("one", 1);
env.put("two", 2);
env.put("one", 100); // overwrites old "one"
Integer one = env.get("one");
if (one != null) {
   System.out.println("one = " + one);
}
```

Using Java's Hash Tables

docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

```
Example
```

```
import java.util.Map;
import java.util.HashMap;
Map < String, Integer > env =
   new HashMap < String , Integer > ();
env.put(null, null); // OKAY: null allowed
env.put("one", 1);
env.put("two", 2);
env.put("one", 100); // overwrites old "one"
Integer one = env.get("one");
if (one != null) {
   System.out.println("one = " + one);
}
```