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Hashing

Definition (Hash Function)

A function h: K — H that maps a large set of keys to a smaller set of
hash codes (or simply hashes)

@ For programming purposes, typically H = N—integers suitable for
array indices

@ In Java, the hashCode method of every Object returns an int

Example

In Java, the hash code of a String s with a length n is computed by

n—1
h(s) = g (s.charAt (i) x 31" 171)
i=0
”
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Perfect vs Imperfect Hashing

Definition (Collision)
A collision occurs when keys k; and ky hash to the same value, v

Definition (Perfect Hash Function)

A hash function that produces no collisions (i.e., a 1-1 function)

Example

A trivially perfect hash function maps the it element of K to just /:

nn H 0
||al| H 1

"aa" — 2

v
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Open-Address Hashing

Let’s populate the following array using the hash function h(n) = n % 10
to generate our indices

(0] (11 (21 (3] 1[4 (5] (el [7] [8] [9]
314 159 265 358 97 9323 84692

After populating, what happens if we search for, say, 2177
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =

(D)

We've tried every index, grow the array
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-
Open-Address Hashing

Let’s populate the following array using the hash function h(n) = n % 10
to generate our indices

o] [11 [2] (3] 1[4] (s8] ([e] [7]1 ([8] [9]
31 41 59 26 53 58 97 932

After populating, what happens if we search for, say, 271837
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =

(D)

We've tried every index, grow the array
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-
Open-Address Hashing

Let’s populate the following array using the hash function h(n) = n % 10
to generate our indices

o] [11 [2] (3] 1[4] (s8] ([e] [7]1 ([8] [9]
10 20 30 40 50 60 70 80 91

After populating, what happens if we search for, say, 2717
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =

(D)

We've tried every index, grow the array
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Multiple Choice Question

In the best case, what is the complexity of inserting a value using
open-address hashing?

(A) Q(1)
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|
Multiple Choice Question

In the worst case, what is the complexity of inserting a value using
open-address hashing?

(A) O(1)

Alex Vondrak (ajvondrak@csupomona.edu) Hashing Winter 2012 8 /26



Multiple Choice Question

How could an open-address hash implementation in Java compute the
index of an arbitrary Object o7

(A) o.hashCode()

(B) o.hashCode() % array.length

(C) Math.abs(o.hashCode()) % array.length
(D)

D) None of the above
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Multiple Choice Question

Suppose we want a hash table that works much like our
AssociationList<K, V>.

How should we modify this storage scheme to keep track of the two
items—the key and the value?

(A) Use two arrays—one for the keys, one for the values

(B) Hash the key for the index, store the value in the array
(C) Both of the above
(D)

D) None of the above
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Open-Address Hash Table

h(k) = k % 10

o] [11 [2] (31 1[4 (s8] ([e] [7]1 ([8] [9]

ol [11 [21 ([3] [4] ([5] [el [7] [8] [9]
38—+31 98— 14 48— 15 15+—92 53—65 90+—35 29+~ 89

After populating, what happens if we look up the key 487 587
(A) Insert element at empty index i =
(B) Hash collision

(C) Try at the next index, i =
(D

) We've tried every index, grow the array
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Reducing Collisions

There are many ways to design a hash function & table structure. ..

Division Hash Function
@ What we've used so far (modular arithmetic)

o Certain table sizes work better for this: prime numbers of the form
4k + 3 (like 1231 = 4 x 307 + 3)

Mid-Square Hash Function

Return some middle digits of k2

Multiplicative Hash Function

Pick a ¢ such that 0 < ¢ < 1; return the first few fractional digits after
the decimal point in ¢ x k
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Reducing Collisions From Linear Probing

Definition (Linear Probing)

The demonstrated process of searching ahead for vacant spots in the array
one index at a time

v

Definition (Clustering)

When several different keys hash to the same location, elements tend to
cluster around each other, which is a problem (values aren't
well-distributed across the hash table)

Definition (Double Hashing)

Instead of look at the index (i + 1) % data.length for each failed
index i, we have a second hash function, and look at

(i + hash2(key)) % data.length

v
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Multiple Choice Question

Suppose we use double-hashing to start at index 0, but instead of linear
probing, our particular key has us “hop forward” by 2.

o] [11 [2] (31 ([4] (s8] (6] [7]1 ([8] [9]

What's the problem with this?
(A) It's inefficient

(B) If we search for the key later, we have to use linear probing
(C) We only probe half of the array, in this case
(D)

D) None of the above
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Multiple Choice Question

Suppose we use double-hashing to start at index 0, but instead of linear
probing, our particular key has us “hop forward” by 2.

(o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]
What's the problem with this?
(A) It's inefficient
(B) If we search for the key later, we have to use linear probing

(C) We only probe half of the array, in this case—since hash2 returns a
value that’s not relatively prime to data.length

(D) None of the above
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Double Hashing

So sayeth Knuth:

@ For the data array, both the data.length and data.length - 2
must be prime (i.e., they're twin primes)

@ hashl(k) = Math.abs(k.hashCode()) % data.length
@ hash2(k) = 1 + (Math.abs(k.hashCode()) % (data.length - 2))

Then the double-hashing scheme returns a hash?2 that's relatively prime to
data.length
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Chained Hashing

Definition
o Like open-addressing, store data in an array
@ Use hash function to generate index into array
@ Use an array of linked lists

@ When a hash collision occurs, simply add element to linked list

Note

To have an array of instances of a generic class, you need to have a cast
like

(Node<K, V>[]) new Node[10];
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Chained Hashing

Use the hash function h(n) = n % 10
314 159 265 358 97 9323 84692

After populating, what happens if we search for, say, 2177
o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]
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-
Chained Hashing

Use the hash function h(n) = n % 10
31 41 59 26 53 58 97 932

After populating, what happens if we search for, say, 271837
o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]
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Chained Hashing

Use the hash function h(n) = n % 10
10 20 30 40 50 60 70 80

After populating, what happens if we search for, say, 2717
o] [11 [21 ([3] ([4] ([5] ([e] [7] [8] [9]
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Multiple Choice Question

In the best case, what is the complexity of inserting a value using chained
hashing? Looking up a value?

(A) Q(1)
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Multiple Choice Question

In the worst case, what is the complexity of inserting a value using chained
hashing? Looking up a value?

(A) O(1)
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Efficiency

Definition (Load Factor)

Number of elements in the table

T " The size of the table’s array

Open Addressing With Linear Probing

With a non-full array, no removals, and « < 1 the average number of
elements examined in a successful search is approximately

1 1
(1
2<+1—a>
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-
Efficiency

Definition (Load Factor)

~ Number of elements in the table
"~ The size of the table's array

Open Addressing With Double Hashing
With a non-full array, no removals, and « < 1 the average number of
elements examined in a successful search is approximately
—In(1—«)
«
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-
Efficiency

Definition (Load Factor)

_ Number of elements in the table
"~ The size of the table's array

Chained Hashing

The average number of elements examined in a successful search is
approximately

1+

N[ o
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Multiple Choice Question

Definition (Load Factor)

Number of elements in the table
The size of the table's array

o =

What does it mean if o > 17

(A) The array is full of elements

B) It's impossible for a > 1

(B)
(C) The array needs to grow
(D)

D) Donald Knuth is angry
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Efficiency

Linear Probing

Double Hashing

Chained

0.5 1.0 1.5
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Using Java's Hash Tables

docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

Example

import java.util.Hashtable;

Hashtable<String, Integer> env
new Hashtable<String, Integer>();
null not allowed!

env.put (null, null); // ERROR:
env.put("one", 1);
env.put("two", 2);

4

env.put("one", 100); // overwrites old
Integer one = env.get("one");
if (one !'= null) {
System.out.println("one =
}
FEEHE TRy


docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

.
Using Java's Hash Tables

docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

Example

import java.util.Map;
import java.util.HashMap;

Map<String, Integer> env =

new HashMap<String, Integer>();
null allowed

env.put(null, null); // OKAY:
env.put("one", 1);
env.put("two", 2);

env.put("one", 100); // overwrites old

Integer one = env.get("one");
if (ome != null) {
System.out.println("one =

}
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