
Stacks
CS 240

Alex Vondrak

ajvondrak@csupomona.edu

Winter 2012

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 1 / 99



Data Structures

Data Structures

Algorithms

facilitate manipulate

In this class, we mostly study linear data structures

Collections of items tend to have common operations

Adding elements
Removing elements
Querying for particular properties (membership, size, etc.)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 2 / 99



Stacks

Definition (Stack)

A stack is a linear data structure of items arranged from bottom to top.
It’s defined by three operations:

push: To insert an item, you place it on top of the other items

pop: To remove an item, you remove the top element

peek: You may look at the top item of the stack without removing
it; to look at anything underneath, you must pop the top

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 3 / 99



Multiple Choice Question

push(1)−−−−−→

1

push(2)−−−−−→ ???

(A)
2
1

(B)
1
2

(C) (D)

1
Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 4 / 99



Multiple Choice Question

2
1

What would be the result of peek()?

(A) 1

(B) 2

(C) Nothing

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 5 / 99



Multiple Choice Question

2
1

push(3)−−−−−→ ???

(A)
2
1
3

(B)
2
3
1

(C)
1
2
3

(D)
3
2
1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 6 / 99



Multiple Choice Question

3
2
1

What would be the result of peek()?

(A) 1

(B) 2

(C) 3

(D) Nothing

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 7 / 99



Multiple Choice Question

3
2
1

pop()−−−−→ ???

(A)
3
2
1

(B)
2
1

(C)
3
2

(D)
3
1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 8 / 99



Multiple Choice Question

2
1

pop()−−−−→ ???

(A)

1

(B)

2

(C) (D)
2
1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 9 / 99



Multiple Choice Question

1

pop()−−−−→ ???

(A)

1

(B)

2

(C) (D)
2
1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 10 / 99



Multiple Choice Question

pop()−−−−→ ???

(A) An empty stack

(B) An error

(C) No error; the next push just won’t change the stack

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 11 / 99



Multiple Choice Question

Is it possible to push “too many” items onto a stack?

(A) Yes: the computer may run out of memory

(B) No: conceptually, stacks don’t have a fixed size

(C) Both of the above

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 12 / 99



Error States

Definition (Underflow)

When a pop (or peek) is performed on an empty stack, the stack is said
to be in an underflow state

Definition (Overflow)

When a push is performed on a full stack, the stack is said to be in an
overflow state

Note

Conceptually, stack overflow needn’t happen; in practice, it might

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 13 / 99



Multiple Choice Question

If you were to design a Stack class in Java that held ints, what might it
look like?
What would the type of the push method be (ignoring errors)?

(A) public int push()

(B) public int push(int item)

(C) public void push()

(D) public void push(int item)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 14 / 99



Multiple Choice Question

If you were to design a Stack class in Java that held ints, what might it
look like?
What would the type of the pop method be (ignoring errors)?

(A) public int pop()

(B) public int pop(int item)

(C) public void pop()

(D) public void pop(int item)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 15 / 99



Multiple Choice Question

If you were to design a Stack class in Java that held ints, what might it
look like?
What Exceptions might public void push(int item) throw?

(A) throws StackUnderflowException

(B) throws StackOverflowException

(C) throws StackUnderflowException, StackOverflowException

(D) None

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 16 / 99



Multiple Choice Question

If you were to design a Stack class in Java that held ints, what might it
look like?
What Exceptions might public int pop() throw?

(A) throws StackUnderflowException

(B) throws StackOverflowException

(C) throws StackUnderflowException, StackOverflowException

(D) None

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 17 / 99



Multiple Choice Question

If you were to design a Stack class in Java that held ints, what might it
look like?
What would the type of the peek method be?

(A) public int peek(int item)

(B) public int peek(int item) throws StackUnderflowException

(C) public int peek()

(D) public int peek() throws StackUnderflowException

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 18 / 99



Interfaces

interface Stack {

public void push(int item);

public int pop() throws StackUnderflowException;

public int peek() throws StackUnderflowException;

}

class SomeStackImplementation implements Stack {

/* must implement all the methods */

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 19 / 99



Reverse Polish Notation (RPN)

Definition

Normally, we write math operators in infix notation:

A + B

In postfix (or Reverse Polish) notation, we write:

A B +

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 20 / 99



Stack-Based Evaluation

If we see a number, push it to the data stack

If we see an operator, pop the operands and push the result

1 2 + 3 * 4 -

1−→ ???

(A)

1
(B)

2
(C) 1

1
(D) 2

1
Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 21 / 99



Stack-Based Evaluation

If we see a number, push it to the data stack

If we see an operator, pop the operands and push the result

1 2 + 3 * 4 -

1

2−→ ???

(A)

3
(B)

2
(C) 2

1
(D)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 22 / 99



Stack-Based Evaluation

If we see a number, push it to the data stack

If we see an operator, pop the operands and push the result

1 2 + 3 * 4 -

2
1

+−→ ???

(A)

3
(B)

2
(C) 2

1
(D)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 23 / 99



Stack-Based Evaluation

If we see a number, push it to the data stack

If we see an operator, pop the operands and push the result

1 2 + 3 * 4 -

3

3−→ ???

(A)

3
(B) 3

3
(C)

6
(D)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 24 / 99



Stack-Based Evaluation

If we see a number, push it to the data stack

If we see an operator, pop the operands and push the result

1 2 + 3 * 4 -

3
3

*−→ ???

(A)

3
(B)

6
(C)

9
(D)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 25 / 99



Stack-Based Evaluation

If we see a number, push it to the data stack

If we see an operator, pop the operands and push the result

1 2 + 3 * 4 -

9

4−→ ???

(A) 4
9

(B) 9
4

(C)

49

(D)

94

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 26 / 99



Stack-Based Evaluation

If we see a number, push it to the data stack

If we see an operator, pop the operands and push the result

1 2 + 3 * 4 -

4
9

-−→ ???

(A)

5
(B)

−5

(C) (D)Depends

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 27 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0
4
...

...
256
260
264
268
272
276

...
...

How many bits are in
a byte?

(A) 2

(B) 4

(C) 8

(D) 16

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 28 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0
4
...

...
256
260
264
268
272
276

...
...

How many bytes are in
a 32-bit word?

(A) 2

(B) 4

(C) 8

(D) 16

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 29 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0
4
...

...
256
260
264
268
272
276

...
...

Can array fit in a
word?

(A) Yes

(B) No

(C) Depends on its
length

(D) None of the
above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 30 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0 256 ← array

4
...

...
256 int[] object
260 3 ← array.length

264 ? ← array[0]

268 ? ← array[1]

272 ? ← array[2]

276
...

...

What are the ini-
tial values stored in
array?

(A) null

(B) 0

(C) Nothing is stored

(D) NaN

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 31 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0 256 ← array

4
...

...
256 int[] object
260 3 ← array.length

264 0 ← array[0]

268 0 ← array[1]

272 0 ← array[2]

276
...

...

Can i fit in a word?

(A) Yes

(B) No

(C) Depends on what
number it is

(D) None of the
above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 32 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0 256 ← array

4 0 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 0 ← array[1]

272 0 ← array[2]

276
...

...

How many bytes
away from 260 is
array[0]?

(A) 1

(B) 2

(C) 4

(D) 8

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 33 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0 256 ← array

4 1 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 100 ← array[1]

272 0 ← array[2]

276
...

...

How many bytes
away from 260 is
array[1]?

(A) 2

(B) 4

(C) 8

(D) 12

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 34 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0 256 ← array

4 2 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 100 ← array[1]

272 100 ← array[2]

276
...

...

How many bytes
away from 260 is
array[2]?

(A) 2

(B) 4

(C) 8

(D) 12

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 35 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0 256 ← array

4 3 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 100 ← array[1]

272 100 ← array[2]

276
...

...

What is the relation-
ship between an array
index and its address?

(A) addr=base+idx

(B) addr=base*idx

(C)
addr=base+4*idx

(D)
addr=base+base*idx

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 36 / 99



Arrays

int[] array = new int[3];

for (int i = 0; i < array.length; i++) {

array[i] = 100;

}
addr

0 256 ← array

4 3 ← i
...

...
256 int[] object
260 3 ← array.length

264 100 ← array[0]

268 100 ← array[1]

272 100 ← array[2]

276
...

...

What is O the running
time of an array access
in terms of its size?

(A) O(1)

(B) O(n)

(C) O(log n)

(D) None of the
above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 37 / 99



ArrayStack

class ArrayStack implements Stack {

// Idea: use an array to implement a stack

}

What fields should we have?

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 38 / 99



ArrayStack

class ArrayStack implements Stack {

private static final int INITIAL_CAPACITY = 10;

private int[] data;

private int top;

}

What methods should we have?

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 39 / 99



Constructor

class ArrayStack implements Stack {

private static final int INITIAL_CAPACITY = 10;

private int[] data;

private int top;

public ArrayStack () {

// ...

}

}

What should this method do?

(A) Set top to INITIAL_CAPACITY

(B) Set top to data.length

(C) Set data to an array of top elements

(D) Set data to an array of INITIAL_CAPACITY elements

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 40 / 99



Constructor

class ArrayStack implements Stack {

private static final int INITIAL_CAPACITY = 10;

private int[] data;

private int top;

public ArrayStack () {

this.data = new int[this.INITIAL_CAPACITY ];

// ...

}

}

Where should this.top start?

(A) -1

(B) 0

(C) data.length

(D) INITIAL_CAPACITY-1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 41 / 99



Constructor

class ArrayStack implements Stack {

private static final int INITIAL_CAPACITY = 10;

private int[] data;

private int top;

public ArrayStack () {

this.data = new int[this.INITIAL_CAPACITY ];

this.top = -1;

}

// ...

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 42 / 99



Helper Methods

class ArrayStack implements Stack {

// ...

public int size() {

// ?

}

// ...

}

How should we calculate the size of the stack?

(A) this.INITIAL_CAPACITY

(B) this.top

(C) this.top + 1

(D) this.data.length

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 43 / 99



Helper Methods

class ArrayStack implements Stack {

// ...

public int size() {

return this.top + 1;

}

public boolean isEmpty () {

// ?

}

}

Which of the following is the best way to check if the stack is empty?

(A) this.top == -1

(B) this.top < 0

(C) this.size() == 0

(D) this.size() <= 0

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 44 / 99



Helper Methods

class ArrayStack implements Stack {

// ...

public int size() {

return this.top + 1;

}

public boolean isEmpty () {

return this.size() == 0;

}

// ...

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 45 / 99



peek

public int peek() throws StackUnderflowException {

// ?

}

Where does StackUnderflowException come from?

(A) It’s a class in a Java library

(B) It doesn’t matter; the code will still compile

(C) Nowhere; we need to define it ourselves

(D) It’s automatically defined when we declare it in the throws clause

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 46 / 99



Detour: StackUnderflowException

class StackUnderflowException extends /* ? */ {

// ...

}

What should be the parent class of StackUnderflowException?

(A) RuntimeException

(B) Exception

(C) Error

(D) Throwable

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 47 / 99



Detour: StackUnderflowException

class StackUnderflowException extends RuntimeException {

public StackUnderflowException () {

super("Stack underflow.");

}

}

What does super refer to?

(A) The constructor of the parent class

(B) The constructor of the Object class

(C) The constructor of the StackUnderflowException class

(D) The constructor of the Throwable class

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 48 / 99



peek

public int peek() throws StackUnderflowException {

return /* ? */;

}

What value should peek return?

(A) this.data[0]

(B) this.data[this.data.length - 1]

(C) this.data[this.size()]

(D) this.data[this.top]

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 49 / 99



peek

public int peek() throws StackUnderflowException {

return this.data[this.top];

}

When might this definition cause problems?

(A) It won’t

(B) When the stack is empty

(C) When the stack is full

(D) When the user is stupid

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 50 / 99



peek

public int peek() throws StackUnderflowException {

if (this.isEmpty ()) {

// ...

}

return this.data[this.top];

}

What should we do when the stack is empty?

(A) Throw an ArrayIndexOutOfBoundsException

(B) Throw a new IndexOutOfBoundsException

(C) Throw a StackUnderflowException

(D) Print out an error message

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 51 / 99



peek

public int peek() throws StackUnderflowException {

if (this.isEmpty ()) {

throw new StackUnderflowException ();

}

return this.data[this.top];

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 52 / 99



pop

public int pop() throws StackUnderflowException {

// ...

}

What makes pop different from peek?

(A) We must modify the contents of the stack

(B) We must decrement this.top

(C) We can’t throw a StackUnderflowException

(D) Nothing; just return this.peek()

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 53 / 99



pop

public int pop() throws StackUnderflowException {

int result = this.peek ();

// ...

}

Do we need to handle the case where the stack’s empty?

(A) Yes: peek might throw an Excpetion

(B) Yes: if the stack’s empty, we shouldn’t call peek

(C) No: peek throws the Exception for us

(D) No: pop won’t be called on empty stacks

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 54 / 99



pop

public int pop() throws StackUnderflowException {

int result = this.peek ();

// ...

}

What do we do with the top element of the stack (i.e.,
this.data[this.top])?

(A) Overwrite it with null

(B) Overwrite it with 0

(C) Overwrite it with -1

(D) Nothing

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 55 / 99



pop

public int pop() throws StackUnderflowException {

int result = this.peek ();

// ...

}

What do we do with this.top now?

(A) this.top--;

(B) this.top++;

(C) this.top = 0;

(D) this.top = this.size() - 1;

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 56 / 99



pop

public int pop() throws StackUnderflowException {

int result = this.peek ();

this.top --;

// ...

}

What do we have left to do?

(A) Nothing

(B) Return result

(C) Check if the stack is empty

(D) Print out result

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 57 / 99



pop

public int pop() throws StackUnderflowException {

int result = this.peek ();

this.top --;

return result;

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 58 / 99



push

public void push(int item) {

// ...

}

What happens to this.top as we push?

(A) It increments by 1

(B) It decrements by 1

(C) Nothing

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 59 / 99



push

public void push(int item) {

this.top++;

// ...

}

What happens to this.data?

(A) this.data[this.top] = item

(B) this.data[this.top + 1] = item

(C) this.data[0] = item

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 60 / 99



push

public void push(int item) {

this.top++;

this.data[this.top] = item;

}

What if this.top > this.data.length?

(A) Can’t happen

(B) Let the Java Runtime worry about that

(C) Throw a StackOverflowException

(D) We should allocate a new, bigger array

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 61 / 99



push

public void push(int item) {

if (this.size() == this.data.length) {

this.grow ();

}

this.top++;

this.data[this.top] = item;

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 62 / 99



grow

What should be the type of the grow method?

(A) public int grow()

(B) public void grow()

(C) private void grow()

(D) private void grow(int byHowMuch)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 63 / 99



grow

private void grow() {

int[] biggerArray = new int[2 * this.data.length + 1];

for (int i = 0; i < this.data.length; i++) {

biggerArray[i] = this.data[i];

}

this.data = biggerArray;

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 64 / 99



Efficiency

public int size() {

return this.top + 1;

}

What is the worst-case running time of size in terms of O of a function
of the size of the stack, n?

(A) O(1)

(B) O(log n)

(C) O(n)

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 65 / 99



Efficiency

public boolean isEmpty () {

return this.size() == 0;

}

What is the worst-case running time of isEmpty in terms of O of a
function of the size of the stack, n?

(A) O(1)

(B) O(log n)

(C) O(n)

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 66 / 99



Efficiency

public int peek() throws StackUnderflowException {

if (this.isEmpty ()) {

throw new StackUnderflowException ();

}

return this.data[this.top];

}

What is the worst-case running time of peek in terms of O of a function
of the size of the stack, n?

(A) O(1)

(B) O(log n)

(C) O(n)

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 67 / 99



Efficiency

public int pop() throws StackUnderflowException {

int result = this.peek ();

this.top --;

return result;

}

What is the worst-case running time of pop in terms of O of a function of
the size of the stack, n?

(A) O(1)

(B) O(log n)

(C) O(n)

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 68 / 99



Efficiency

private void grow() {

int[] biggerArray = new int[2 * this.data.length + 1];

for (int i = 0; i < this.data.length; i++) {

biggerArray[i] = this.data[i];

}

this.data = biggerArray;

}

What is the worst-case running time of grow in terms of O of a function
of the size of the stack, n?

(A) O(1)

(B) O(log n)

(C) O(n)

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 69 / 99



Efficiency

public void push(int value) {

if (this.size() == this.data.length) {

this.grow ();

}

this.top++;

this.data[this.top] = value;

}

What is the worst-case running time of push in terms of O of a function
of the size of the stack, n?

(A) O(1)

(B) O(log n)

(C) O(n)

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 70 / 99



Amortized Analysis

Definition

A method of algorithm analysis that considers the entire sequence of
operations in a program

Pros

If a costly operation occurs infrequently, we’d like to count the
expected “worst case” running time, not the absolute worst

Thus, gives us a “fairer” impression of expected running times

Cons

More difficult to analyze

Often confused with average case analysis—the distinction is
important!

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 71 / 99



What If. . . ?

Let’s look at a sequence of push operations onto the same ArrayStack.
However, instead of our “double the size” grow, what if we had

private void grow() {

int[] biggerArray = new int[this.data.length + 1];

for (int i = 0; i < this.data.length; i++) {

biggerArray[i] = this.data[i];

}

this.data = biggerArray;

}

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 72 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

How many operations are performed in a sequence of n = 1 push(es)?

(A) 1

(B) 2

(C) 3

(D) 4

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 73 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

How many operations are performed in a sequence of n = 2 push(es)?

(A) 1+1

(B) 1+2

(C) 1+3

(D) 1+4

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 74 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

How many operations are performed in a sequence of n = 3 push(es)?

(A) 1+2+1

(B) 1+2+2

(C) 1+2+3

(D) 1+2+4

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 75 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

Consider an arbitrary number of pushes, n. What is the cost of the first
push in this sequence?

(A) 1

(B) 2

(C) 3

(D) 4

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 76 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

Consider an arbitrary number of pushes, n. What is the cost of the second
push in this sequence?

(A) 1

(B) 2

(C) 1+2

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 77 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

Consider an arbitrary number of pushes, n. What is the cost of the third
push in this sequence?

(A) 1

(B) 2

(C) 3

(D) 1+2+3

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 78 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

Consider an arbitrary number of pushes, n. In general, what’s the cost of
the i th push in this sequence?

(A) i

(B) 1 + 2 + · · ·+ i

(C) n

(D) 1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 79 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

Consider an arbitrary number of pushes, n. In general, what’s the total
cost of this sequence?

(A) 1 + 2 + · · ·+ i

(B) 1 + 2 + · · ·+ n

(C) n

(D) i

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 80 / 99



Multiple Choice Question

Suppose we have a sequence of n push operations to our ArrayStack.
For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

Consider an arbitrary number of pushes, n. In general, what’s the average
cost of each push in this sequence?

(A) (1 + 2 + · · ·+ n)/i

(B) (1 + 2 + · · ·+ n)/n

(C) n2

(D) 1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 81 / 99



Multiple Choice Question

To get an idea of what
1 + 2 + · · ·+ n

n

is, we’ll show that
n∑

i=1

i =
n(n + 1)

2

How should we prove this?

(A) Axiomatically

(B) Recursively

(C) Inductively

(D) Productively

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 82 / 99



Multiple Choice Question

n∑
i=1

i =
n(n + 1)

2

Proof (by induction on n).

Base Case (n =?): . . .

Inductive Step: . . .

What is the base base?

(A) n = 1

(B) n = 0

(C) n = i

(D) n = k + 1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 83 / 99



Multiple Choice Question

Proof (by induction on n).

Base Case (n = 1):
∑1

i=1 i =? = 1 = n(n+1)
2

Inductive Step: . . .

What is
∑1

i=1 i?

(A) 1

(B) 1 + 1

(C) 0

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 84 / 99



Multiple Choice Question

Proof (by induction on n).

Base Case (n = 1):
∑1

i=1 i = 1 = 1 = 1(1+1)
2

Inductive Step: Assume equality holds for n = k . Show that equality holds
at n =?

What do we show in the inductive step?

(A) The equality holds at n = n + 1

(B) The equality holds at n = k + 1

(C) The equality holds at n = n − 1

(D) The equality holds at n = k − 1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 85 / 99



Multiple Choice Question

Proof (By induction on n).

Base Case (n = 1):
∑1

i=1 i = 1 = 1 = 1(1+1)
2

Inductive Step: Assume equality holds for n = k . Show that equality holds
at n = k + 1.

k∑
i=1

i =
k(k + 1)

2
(Inductive Hypothesis)

What should we do now?

(A) Add k + 1 to both sides

(B) Break the
∑

into k +
∑k−1

i=1 i

(C) Multiply both sides by 2

(D) Plug in k + 1 for n

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 86 / 99



Multiple Choice Question

Proof (By induction on n).

Base Case (n = 1):
∑1

i=1 i = 1 = 1 = 1(1+1)
2

Inductive Step: Assume equality holds for n = k. Show that equality holds at n = k +1.

k∑
i=1

i =
k(k + 1)

2
(Inductive Hypothesis)

(k + 1) +
k∑

i=1

i = (k + 1) +
k(k + 1)

2

What is the left side equal to?

(A)
∑k

i=1 i

(B)
∑k

i=0 i

(C)
∑k+1

i=1 i

(D)
∑k

i=1(i + 1)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 87 / 99



QED

Proof (By induction on n).

Base Case (n = 1):
∑1

i=1 i = 1 = 1 = 1(1+1)
2

Inductive Step: Assume equality holds for n = k . Show that equality holds
at n = k + 1.

k∑
i=1

i =
k(k + 1)

2
(Inductive Hypothesis)

(k + 1) +
k∑

i=1

i = (k + 1) +
k(k + 1)

2

k+1∑
i=1

i =
(k + 1)((k + 1) + 1)

2

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 88 / 99



Multiple Choice Question

So, now we know
1 + 2 + · · ·+ n

n

is the same as
n(n + 1)/2

n

which is the same as
n + 1

2

The average running time of a push (with our grow-by-1 strategy) is thus

(A) O(1)

(B) O(n)

(C) O(n2)

(D) O(log n)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 89 / 99



Multiple Choice Question

Now suppose we had our “double the size” grow. For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

grow exactly doubles the size of the array (rather than having that
+1 at the end)

In a sequence of n pushes, how many operations are used to write the new
data into the array (not for growing)?

(A) 1

(B) n

(C) 1 + 2 + · · ·+ n

(D) Can’t be determined

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 90 / 99



Multiple Choice Question

Now suppose we had our “double the size” grow. For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

grow exactly doubles the size of the array (rather than having that
+1 at the end)

How often do we call grow?

(A) Every time we call push

(B) Every second call to push

(C) Every n calls to push

(D) Only on certain calls to push (varying)

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 91 / 99



Multiple Choice Question

Now suppose we had our “double the size” grow. For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

grow exactly doubles the size of the array (rather than having that
+1 at the end)

How many operations are used for the first grow?

(A) 1

(B) 2

(C) 3

(D) 4

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 92 / 99



Multiple Choice Question

Now suppose we had our “double the size” grow. For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

grow exactly doubles the size of the array (rather than having that
+1 at the end)

How many operations are used for the second grow?

(A) 1

(B) 2

(C) 3

(D) 4

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 93 / 99



Multiple Choice Question

Now suppose we had our “double the size” grow. For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

grow exactly doubles the size of the array (rather than having that
+1 at the end)

How many operations are used for the third grow?

(A) 1

(B) 2

(C) 3

(D) 4

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 94 / 99



Multiple Choice Question

Now suppose we had our “double the size” grow. For simplicity, assume:

INITIAL_CAPACITY is 1

The cost of writing/copying an array element is 1 operation

Other operations cost 0

grow exactly doubles the size of the array (rather than having that
+1 at the end)

How many operations are used for the i th grow?

(A) 2× i

(B) 2i

(C) log2 i

(D) None of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 95 / 99



Multiple Choice Question

So, we have roughly
log2 n∑
i=0

2i = 2n − 1

operations total for the grows in a sequence of n pushes.
How many operations are there total for the n pushes?

(A) n

(B) 2n − 1

(C) 2n

(D) 3n − 1

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 96 / 99



Multiple Choice Question

Averaged out over n operations, the cost of push is about

3n

n
= 3

Thus, our “double the size” implementation of push is

(A) O(1)

(B) O(n)

(C) O(n2)

(D) All of the above

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 97 / 99



Multiple Choice Question

Is there any reason that a stack should only have integers?

(A) Yes

(B) No

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 98 / 99



Converting Infix To Postfix

If you see a left parenthesis, push it onto the stack

If you see a number, write it to the output

If you see an operator, push it onto the stack

Otherwise, next symbol should be a right parenthesis, and the top of
the stack should be an operator

Pop the operator and write it to the output
Top of the stack should be a left parenthesis, so pop and discard

At the end of the input, stack should be empty

Examples

((1+2)*3)

((1+2)*(3+4))

Alex Vondrak (ajvondrak@csupomona.edu) Stacks Winter 2012 99 / 99


