
Java Stylesheet

Alex Vondrak

Last Revised: January 11, 2012

1 Java Features

Integrated Development Environments (IDEs) are often excessive with their suggested uses of
annotations like @Override or @SuppressWarnings, which are a special form of documentation
that can be added to Java code. Annotations don’t buy us much at this level, especially if we insert
them just because the IDE told us to. For lack of usefulness in projects as small as those in CS
240, don’t use annotations.

Additionally, you may have learned about Java’s documentation system called Javadoc. If the
source code includes specially-formatted comments, Javadoc generates HTML web pages like those
seen at http://docs.oracle.com/javase/7/docs/api/. Again, though it’s very useful, CS 240
projects aren’t so complex that they need elaborate documentation. Thus, do not use Javadoc.

This is not to say you shouldn’t comment your code. But even writing comments is an acquired
skill: too many comments—especially trivial ones—don’t really help the code’s readability. As a
rule of thumb, good comments document the why, not the how. Code is the most literal way to
describe what’s happening, so if the how isn’t clear, you should rewrite your code until it is. If the
code is clear, additional comments are unnecessary, except to clarify why the code’s a certain way.
Don’t be that programmer who makes useless comments like x += 1; // increment x by 1.

2 Conventions

2.1 Structure

1. Lines should be a maximum of 80 characters long. You may need to put a linebreak in
between long expressions to adhere to this rule.

2. Sort import statements lexicographically and place them at the top of the file.

3. Using the .* form of import should be avoided.

4. Using a static member import should be avoided (i.e., the import static statement).

5. Don’t import

• a class you don’t use.

• a class more than once.

• a class from the java.lang package (this is redundant).

1

• a class from the sun package1.

6. Always label instance variables, methods, and constructors with the proper modifiers. If more
than one modifier applies, declare them in the following order:

1) public

2) protected

3) private

4) abstract

5) static

6) final

7. The parts of a class or interface declaration should appear in the following order:

1) Class (static) variables. First the public class variables, then the protected, then
the private.

2) Instance variables (fields). First the public fields, then the protected, then the
private.

3) Constructors

4) Methods

5) Inner (nested) classes

8. In general, instance variables should be private and have accessor methods (“getters” and/or
“setters”).

9. In general, non-final instance variables should be initialized in constructors, not in their
declarations. final variables should be initialized in their declarations, though.

2.2 Blocks

10. The bodies following do, else, if, for, and while constructs require the use of curly braces,
even if they are only for a single statement.

11. Avoid empty blocks. Every block should have at least one statement.

12. Avoid nested

• blocks.

• for loops.

• if statements.

• try statements.

13. If the left brace will fit on the first line of the statement, then the brace must be at the end
of the line. Otherwise the brace must be on a new line. For example:

1See http://www.oracle.com/technetwork/java/faq-sun-packages-142232.html.

2

GOOD

if (condition) {

if (condition1 && condition2 && condition3 && condition4

&& condition5)

{

BAD

if (condition)

{

if (condition1 && condition2 && condition3 && condition4

&& condition5) {

14. The right brace of a block must be alone on a line. For example:

GOOD

if (condition) {

// ...

}

else {

// ...

}

BAD

if (condition) {

// ...

} else { /* ... */ }

2.3 Whitespace

15. Indent each level2 of code by 3 spaces.

16. Do not use the tab key to indent lines. There should be no tab characters in your file. If
there are, they’ll be assumed to represent 3 spaces.

17. Classes should be separated by two blank lines.

18. Methods in a class should be separated by one blank line.

19. If a line is too long to fit an expression involving multiple infix operators, the operator should
go on a new line and be indented to the proper level. For example:

2Basically, a new level is introduced by each block.

3

GOOD

someVariable = aBigVariableNameThatIsQuiteBig + "blah blah"

+ someOtherVariable;

BAD

someVariable = aBigVariableNameThatIsQuiteBig + "blah blah" +

someOtherVariable;

20. There should be no space after a left parenthesis or before a right parenthesis. For example:

GOOD

object.method(1, 2, "buckle", "my", "shoe");

BAD

object.method(1, 2, "buckle", "my", "shoe");

This includes typecasts. For example:

GOOD

(int) x;

BAD

(int) x;

21. There should be no space between the identifier of a method definition, constructor definition,
method call, or constructor invocation and its corresponding left parenthesis. For example:

GOOD

public static void main(String [] args) {

methodCall ();

Constructor x = new Constructor (1, 2, 3);

}

BAD

public static void main (String [] args) {

methodCall ();

Constructor x = new Constructor

(1, 2, 3);

}

22. There should be whitespace after:

• a comma

4

• a semicolon

• a typecast (so (int) x, not (int)x)

• a keyword (catch, do, else, finally, for, if, return, try, while)

23. There should not be whitespace after:

• a unary operator (~, !, prefix --, prefix ++, unary -, unary +)

• the left brace of an array literal (so int[] {1, 2, 3}, not int[] { 1, 2, 3 })

24. There should be whitespace before a left curly brace. For example:

GOOD

public static void main(String [] args) {

BAD

public static void main (String [] args){

25. There should not be whitespace before:

• a semicolon

• the postfix -- and ++ operators

26. There should be whitespace surrounding both sides of:

• binary operators (&, &&, |, ||, >, >=, <, <=, ==, !=, <<, >>, >>>, ^, /, -, +, *, %)

• assignment operators (=, &=, |=, <<=, >>=, >>>=, ^=, /=, -=, *=, +=, %=)

• the parts of the ternary operator (?, :)

27. There should not be whitespace surrounding either side of:

• a dot (.)

• the angle-brackets of a generic type declaration (so List<Integer> xs, not
List < Integer > xs)

2.4 Naming

28. Generic type parameters should use single uppercase letters (A–Z).

29. final variables should use UNDERSCORE_CAPS.

30. Non-final variables and method names should use lowerCamelCase.

31. class and interface names should use UpperCamelCase.

32. Variable names should reflect their purpose. As a rule of thumb, class names should be nouns
and method names should be verbs/verb-phrases.

5

3 Readability

33. long constants should use an uppercase L, since a lowercase l looks too much like the number
1 (so 100L, not 100l).

34. Do not use the variable name l (a lowercase L), because it is very easily confused with the
number 1 (one).

35. Array brackets should come after the type, not the variable (so String[] args, not
String args[]).

36. Don’t rely on the this. default for field names and methods; instead, spell it out in full (so
this.x, not just x).

37. Except for constructors and setter methods, do not name a method parameter the same thing
as a class field. That is, do not “hide” a field with a parameter. For example:

class Foo {

private int x;

// OKAY

public Foo(int x) {

this.x = x;

}

// OKAY

public void setX(int x) {

this.x = x;

}

// NOT OKAY

public int normalMethod(int x) {

return x + this.x;

}

}

38. Each variable declaration should be on its own line.

39. Each statement should be on its own line.

40. switch statements should always have a default clause, and the default should come last.

41. Avoid unnecessary parentheses.

42. In general, avoid using the ternary operator.

43. Avoid empty statements (i.e., standalone ;s).

44. Avoid inner assignments, wherein there’s an assignment inside of a subexpression. For exam-
ple:

6

GOOD

i = 2;

String s = Integer.toString(i);

BAD

String s = Integer.toString(i = 2);

45. Do not leave in “to do” comments or other comments automatically generated by your IDE.

7

