
Factor
An Introduction to Concatenative Stack Languages

Alex Vondrak

ajvondrak@csupomona.edu

October 14, 2009

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 1 / 34

Introduction

From the Corner of Cool LanguagesTM

Assumption: you are not familiar with stack-based programming.

Factor

Started development in 2003 – a baby among languages
Open source (BSD license)
Stack-based
Concatenative

Priorities:
1 Explain stack languages (bias towards Factor)
2 What makes Factor cool?
3 Learning all the stuff I have to skip

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 2 / 34

Stack Languages In the Abstract

1 Stack Languages
In the Abstract
In Code
Common Talking Points

2 Factor
Features, Libraries, Etc.

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 3 / 34

Stack Languages In the Abstract

Review: Stacks

push(a)
−−−−−−−→

pop
←−−−−

a

push(b)
−−−−−−−→

pop
←−−−− b

a

push(c)
−−−−−−−→

pop
←−−−−

c
b
a

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 4 / 34

Stack Languages In the Abstract

Stacks as an Evaluation Model

Example (Code)

1 2 +

Example (Execution)

push(1);
push(2);
y = pop(); // y = 2;
x = pop(); // x = 1;
push(x + y); // push(3);

2
1

+−→
3

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 5 / 34

Stack Languages In Code

1 Stack Languages
In the Abstract
In Code
Common Talking Points

2 Factor
Features, Libraries, Etc.

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 6 / 34

Stack Languages In Code

Factor
A Practical Stack Language

There are several stack-based languages: Forth, PostScript, Joy, Cat,
etc.

Factor is. . .

. . . high-level, typed, and garbage-collected (vs Forth)

. . . dynamically typed (vs Cat)

. . . more “practical” than “academic” (vs Joy)

Instead of using variables, Factor programs manipulate global stacks.

Data Stack (“the” stack)
Retain Stack
Call Stack
Catch Stack
Name Stack

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 7 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Removing Stack Items

drop

Stack Effect

x

drop−−−→

drop (x --)

2drop

nip

Others

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 8 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Removing Stack Items

drop

2drop

Stack Effect

y
x

2drop−−−−→

2drop (x y --)

nip

Others

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 8 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Removing Stack Items

drop

2drop

nip

Stack Effect

y
x

nip−−−→
y

nip (x y -- y)

Others

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 8 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Removing Stack Items

drop

2drop

nip

Others

Stack Effects

3drop (x y z --)

2nip (x y z -- z)

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 8 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Duplicating Stack Items

dup

Stack Effect

x

dup−−−→ x
x

dup (x -- x x)

2dup

Others

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 9 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Duplicating Stack Items

dup

2dup

Stack Effect

y
x

2dup−−−→

y
x
y
x

2dup (x y -- x y x y)

Others

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 9 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Duplicating Stack Items

dup

2dup

Others

Stack Effects

3dup (x y z -- x y z x y z)

dupd (x y -- x x y)

over (x y -- x y x)

2over (x y z -- x y z x y)

pick (x y z -- x y z x)

tuck (x y -- y x y)

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 9 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Permuting Stack Items

swap

Stack Effect

y
x

swap−−−→ x
y

swap (x y -- y x)

spin

Others

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 10 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Permuting Stack Items

swap

spin

Stack Effect

z
y
x

spin−−−→
x
y
z

spin (x y z -- z y x)

Others

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 10 / 34

Stack Languages In Code

Stack Shufflers and Their Effects
Permuting Stack Items

swap

spin

Others

Stack Effects

swapd (x y z -- y x z)

rot (x y z -- y z x)

-rot (x y z -- z x y)

roll (x y z t -- y z t x)

-roll (x y z t -- t x y z)

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 10 / 34

Stack Languages In Code

Not Enough Data? Too Much Data?

Underflow

b
a

3drop−−−−→ 7

No Underflow

c
b
a

2drop−−−−→
a

X

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 11 / 34

Stack Languages In Code

Composition
Intuitively

By manipulating the stack, words can be executed one by one.

Example (Squaring A Number)

3

dup−−−→ 3
3

*−→
9

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 12 / 34

Stack Languages In Code

Composition
In Code

To do several things to the stack, just write them out one by one.

Example (x2 + y2)

dup * swap dup * +

3
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 13 / 34

Stack Languages In Code

Composition
In Code

To do several things to the stack, just write them out one by one.

Example (x2 + y2)

dup * swap dup * +

3
2

dup−−−→
3
3
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 13 / 34

Stack Languages In Code

Composition
In Code

To do several things to the stack, just write them out one by one.

Example (x2 + y2)

dup * swap dup * +

3
2

dup−−−→
3
3
2

*−→ 9
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 13 / 34

Stack Languages In Code

Composition
In Code

To do several things to the stack, just write them out one by one.

Example (x2 + y2)

dup * swap dup * +

3
2

dup−−−→
3
3
2

*−→ 9
2

swap−−−→ 2
9

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 13 / 34

Stack Languages In Code

Composition
In Code

To do several things to the stack, just write them out one by one.

Example (x2 + y2)

dup * swap dup * +

2
9

dup−−−→
2
2
9

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 13 / 34

Stack Languages In Code

Composition
In Code

To do several things to the stack, just write them out one by one.

Example (x2 + y2)

dup * swap dup * +

2
9

dup−−−→
2
2
9

*−→ 4
9

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 13 / 34

Stack Languages In Code

Composition
In Code

To do several things to the stack, just write them out one by one.

Example (x2 + y2)

dup * swap dup * +

2
9

dup−−−→
2
2
9

*−→ 4
9

+−→
13

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 13 / 34

Stack Languages In Code

Concatenation

Then, function composition is just word concatenation.

Example (Polar Coordinates)

r =
√

x2 + y2 and θ = arctan
(y

x

)
2dup dup * swap dup * + sqrt spin / atan

3
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 14 / 34

Stack Languages In Code

Concatenation

Then, function composition is just word concatenation.

Example (Polar Coordinates)

r =
√

x2 + y2 and θ = arctan
(y

x

)
2dup dup * swap dup * + sqrt spin / atan

3
2

2dup−−−→

3
2
3
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 14 / 34

Stack Languages In Code

Concatenation

Then, function composition is just word concatenation.

Example (Polar Coordinates)

r =
√

x2 + y2 and θ = arctan
(y

x

)
2dup dup * swap dup * + sqrt spin / atan

3
2

2dup−−−→

3
2
3
2

...−−−→ 13

3
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 14 / 34

Stack Languages In Code

Concatenation

Then, function composition is just word concatenation.

Example (Polar Coordinates)

r =
√

x2 + y2 and θ = arctan
(y

x

)
2dup dup * swap dup * + sqrt spin / atan

3
2

2dup−−−→

3
2
3
2

...−−−→ 13

3
2

sqrt−−−→ 3.6

3
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 14 / 34

Stack Languages In Code

Concatenation

Then, function composition is just word concatenation.

Example (Polar Coordinates)

r =
√

x2 + y2 and θ = arctan
(y

x

)
2dup dup * swap dup * + sqrt spin / atan

3.6

3
2

spin−−−→ 2
3
3.6

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 14 / 34

Stack Languages In Code

Concatenation

Then, function composition is just word concatenation.

Example (Polar Coordinates)

r =
√

x2 + y2 and θ = arctan
(y

x

)
2dup dup * swap dup * + sqrt spin / atan

3.6

3
2

spin−−−→ 2
3
3.6

/−→
1.5

3.6

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 14 / 34

Stack Languages In Code

Concatenation

Then, function composition is just word concatenation.

Example (Polar Coordinates)

r =
√

x2 + y2 and θ = arctan
(y

x

)
2dup dup * swap dup * + sqrt spin / atan

3.6

3
2

spin−−−→ 2
3
3.6

/−→
1.5

3.6

atan−−−→
.98

3.6

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 14 / 34

Stack Languages In Code

Factoring

Before

2dup dup * swap dup * + sqrt spin / atan

After

: r (x y -- magnitude) dup * swap dup * + sqrt ;

: theta (y x -- angle) / atan ;

2dup r spin theta

How else could we factor this?

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 15 / 34

Stack Languages In Code

Parsing

Parsing is very simple in Factor: words are separated by whitespace.

Data literals (numbers) are parsed and pushed onto the stack.

Normal words execute code, but parsing words are a little special.

Example (How the Parser Sees It)

: theta (y x -- angle) / atan ;

Tokenized as : theta (y x -- angle) / atan ;

: is a parsing word that scans ahead for ; and creates a word.

(is a parsing word that scans ahead for) and gives a stack-effect.

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 16 / 34

Stack Languages In Code

Quotations

Parsing words are defined in Factor.

Definition

USING: parser ;
IN: syntax
SYNTAX: [parse-quotation parsed ;

Definition

IN: syntax
DEFER:] (-- *) delimiter

Code between the [and] is a quotation.

The code in a quotation isn’t executed until invoked.

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 17 / 34

Stack Languages In Code

Combinators

Words that use quotations on the stack are called combinators.

Example (Control Flow)

2 3 < ["true" print] ["false" print] if ! prints "true"

[t] ["hello" print "world" print] while ! infinite loop

Example (Iteration)

{ "a" "b" "c" } [print] each

is the same as

"a" print "b" print "c" print

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 18 / 34

Stack Languages Common Talking Points

1 Stack Languages
In the Abstract
In Code
Common Talking Points

2 Factor
Features, Libraries, Etc.

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 19 / 34

Stack Languages Common Talking Points

But It’s Backwards!

Compare:

Dot notation (Java, C++, et al.)

BigInteger.probablePrime(numBits/2, rnd);

Unix pipes

$ find {basis,core,extra} -name *.factor |
> xargs wc -l |
> tail -1
263486 total

Example

USING: calendar calendar.format ;
11 days ago timestamp>ymd ! as of writing, "2009-09-11"

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 20 / 34

Stack Languages Common Talking Points

Can’t I Just Use Variables?

Variables can be a mental burden. Without them. . .

. . . what the program does becomes clearer.

. . . you worry less about bad variable names.

. . . the underlying structure is revealed – makes factoring easier.

The stack allows for interesting abstractions.

Re-imagine old ones (e.g., continuations)
Multiple return values
Point-free style by default

With enough use, of course it won’t seem weird!

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 21 / 34

Stack Languages Common Talking Points

But Seriously, Can’t I Just Use Variables?

Example (Lexical Variables)

USE: locals

:: discriminant (a b c -- d)
b sq
4 a c * *
- ;

Less than 1% of Factor’s source uses locals:

$ find -name *.factor | xargs grep -l "^::" | wc -l
254
$ find -name *.factor | wc -l
3346

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 22 / 34

Stack Languages Common Talking Points

But It’s Still Backwards!

Before

USE: locals

:: discriminant (a b c -- d)
b sq
4 a c * *
- ;

After

USING: locals infix ;

:: discriminant (a b c -- d) [infix b*b - 4*a*c infix] ;

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 23 / 34

Factor Features, Libraries, Etc.

1 Stack Languages
In the Abstract
In Code
Common Talking Points

2 Factor
Features, Libraries, Etc.

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 24 / 34

Factor Features, Libraries, Etc.

Implementation

VM: about 15,000 lines of C++

Core: about 10,000 lines of Factor (sans tests, docs)

Basis: over 100,000 lines of Factor (sans tests, docs)

Two machine-code compilers

Non-optimizing quotation compiler: quick, naive, part of the VM
Optimizing word compiler: slower, smarter, written in Factor

Generational garbage collector

Continuous integration build-farm (74,000 lines of tests in basis, core)

Architecture: x86, x86-64, PowerPC
OS: Windows, OS X, Linux, FreeBSD, NetBSD, OpenBSD

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 25 / 34

Factor Features, Libraries, Etc.

Interactive Development

(scratchpad) 1

--- Data stack:
1
(scratchpad) 2

--- Data stack:
1
2
(scratchpad) +

--- Data stack:
3

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 26 / 34

Factor Features, Libraries, Etc.

Sequence Protocol

(scratchpad) { "a" "b" "c" } [.] each
"a"
"b"
"c"
(scratchpad) "abc" [.] each
97
98
99
(scratchpad) 3 [.] each
0
1
2

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 27 / 34

Factor Features, Libraries, Etc.

Flexible Naming

Example (Ranges)

(scratchpad) USE: math.ranges
(scratchpad) 1 3 (a,b) [.] each
2
(scratchpad) 1 3 (a,b] [.] each
2
3
(scratchpad) 1 3 [a,b) [.] each
1
2
(scratchpad) 1 3 [a,b] [.] each
1
2
3

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 28 / 34

Factor Features, Libraries, Etc.

Libraries
Sending an Email

USING: accessors smtp ;

<email>
"css@csupomona.edu" >>from
{ "ajvondrak@csupomona.edu" } >>to
"That was awful" >>subject
"Get out." >>body

send-email

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 29 / 34

Factor Features, Libraries, Etc.

Libraries
Parser Expression Grammars

USING: peg.ebnf ;
...
EBNF: parse-url

protocol = [a-z]+ => [[url-decode]]
username = [^/:@#?]+ => [[url-decode]]
password = [^/:@#?]+ => [[url-decode]]
pathname = [^#?]+ => [[url-decode]]
query = [^#]+ => [[query>assoc]]
anchor = .+ => [[url-decode]]
...
;EBNF

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 30 / 34

Factor Features, Libraries, Etc.

Libraries
More

GUI tools

Macros

Farkup (custom HTML markup language)

Furnace (web framework)

C Foreign Function Interface

Regular expressions

UI and command-line “listeners”

Text editor integration (Vim, Emacs, TextMate)

Deploy tool

Various data structures

. . .

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 31 / 34

The End Summary

Summary

Concatenative programming lets you compose programs by joining
them together with whitespace.

Stack languages facilitate concatenative programming by passing data
around on the stack(s).

Factor is a particularly good stack programming language:

High level
Practical – has a lot of libraries
Cross platform
Focuses on performance, which is always getting better
And of course. . .

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 32 / 34

The End Summary

Did You See That Fucking Raptor?!

Figure: Velociraptor Mongoliensis

Who’s going to mess with you if your mascot is a dinosaur?
Nobody, that’s who!

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 33 / 34

The End Summary

More

For the stuff I missed, check out:

Factor’s website: http://factorcode.org/

Searchable documentation (http://docs.factorcode.org/)
Wiki
Downloads
etc.

Creator Slava Pestov’s Google Tech Talk (on YouTube)

First Google result for Factor tech talk
A little old, but explains Factor’s compiler and object system
Much more about Factor itself

Development blog: http://factor-language.blogspot.com/

Slava Pestov discusses new features
Other blogs aggregated at http://planet.factorcode.org/

Alex Vondrak (ajvondrak@csupomona.edu) Factor October 14, 2009 34 / 34

	Introduction
	Stack Languages
	In the Abstract
	In Code
	Common Talking Points

	Factor
	Features, Libraries, Etc.

	The End
	

