
What The Hell Are Monads?

Alex Vondrak

ajvondrak@csupomona.edu

January 28, 2011

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 1 / 22

Introduction Overview

“Mo-what?”

Tried doing this in a half-hour CS 664 talk

Reviews were fairly unanimous:

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 2 / 22

Introduction Overview

“Mo-what?”

Tried doing this in a half-hour CS 664 talk

Reviews were fairly unanimous:

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 2 / 22

Introduction Overview

Intended Audience

“Monads? Those functional programming thingies for PhDs?”

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 3 / 22

Introduction Overview

Intended Audience

“Monads? Those functional programming thingies for PhDs?”

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 3 / 22

Introduction Overview

Intended Audience

“Monads? Those functional programming thingies for PhDs?”

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 3 / 22

Introduction Overview

Intended Audience

“Monads? Those functional programming thingies for PhDs?”

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 3 / 22

Introduction Overview

Intended Audience

“Monads? Those functional programming thingies for PhDs?”

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 3 / 22

Introduction Overview

Reality

Never heard of monads

Heard even less about functional programming

And what the hell is category theory, anyway?

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 4 / 22

Introduction Motivation

Why Do We Care?
Functional Programming

Haskell: the poster-child for monads

Purely functional = No side-effects

Why functional programming matters

Variables don’t change unexpectedly
Functions always compute the same result
Major source of bugs is eliminated
Order of execution doesn’t matter—easier to reason about
Easier for compiler to reason about, too

Not going to sell you on functional programming with one slide,
but. . .

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 5 / 22

Introduction Motivation

Why Do We Care?
Functional Programming

Haskell: the poster-child for monads

Purely functional = No side-effects

Why functional programming matters

Variables don’t change unexpectedly
Functions always compute the same result
Major source of bugs is eliminated
Order of execution doesn’t matter—easier to reason about
Easier for compiler to reason about, too

Not going to sell you on functional programming with one slide,
but. . .

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 5 / 22

Introduction Motivation

Why Do We Care?
Monads

“What are the advantages of monads?”
Nothing
Zilch
∅
Absolutely 0

Monads are not a language feature, they’re a structure

Some languages are explicit about their monads

public interface Monad { ... }

Certain data types are monads

class Foo implements Monad { ... }

Utilities can work on monads in general

bar(Monad m1 , Monad m2) { ... }

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 6 / 22

Introduction Motivation

Why Do We Care?

“Because it’s cool.”
–Hologram from Invader Zim explaining why Martians decided to turn

their planet into a giant spaceship

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 7 / 22

Introduction Outline

Outline

Comprehending Monads—Philip Wadler

How are monads defined?

Less time for how are monads used. . .

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 8 / 22

List Comprehensions

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 9 / 22

List Comprehensions Notation

Set-Builder Notation

How many of you remember CS 130?

{ p | q1 ∧ q2 . . . }

set

expression

“such that”

qualifier 1

“and”

qualifier 2 etc.

set

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 10 / 22

List Comprehensions Notation

Set-Builder Notation

Examples

{x | x ∈ {1, 2, 3}}
= {1, 2, 3}

{x + 1 | x ∈ {1, 2, 3}}
= {2, 3, 4}

{x + y | x ∈ {1, 2, 3} ∧ y ∈ {10, 20}}
= {1 + 10, 1 + 20, 2 + 10, 2 + 20, 3 + 10, 3 + 20}

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 11 / 22

List Comprehensions Notation

List Comprehensions

[p | q1 ; q2 . . .]

list

expression

“such that”

qualifier 1

qualifier composition

qualifier 2 etc.

list

Difference: qualifiers are all of the form x ← L

In Python: [p for x in L]

In C#: from x in L select p

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 12 / 22

List Comprehensions Notation

Lists

Ordered sequence of elements

Elements all have the same type

Doesn’t matter what that type is

Examples (Types)

[1, 2, 3] : List〈int〉
["a", "b", "c"] : List〈string〉

[[1], [2, 3]] : List〈List〈int〉〉
[1, "a", [3]] : 7

Rest of this talk = “stuff”

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 13 / 22

List Comprehensions Working With Lists

unit

For some item x of type t. . .

List comprehension:
[x | ∅]

Function:
unit : t → List〈t〉

Examples

unit(5) = [5]

unit("a") = ["a"]

unit(unit(10)) = [[10]]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 14 / 22

List Comprehensions Working With Lists

map

For some list L of type List〈t〉 and a function f : t → t ′. . .

List comprehension:
[f (x) | x ← L]

Function:
map : (t → t ′)× List〈t〉 → List〈t ′〉

Examples

map(add1, [1, 2, 3]) = [2, 3, 4]

map(uppercase, ["a", "b", "c"]) = ["A", "B", "C"]

map(ascii, [’a’, ’b’, ’c’]) = [97, 98, 99]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 15 / 22

List Comprehensions Working With Lists

map

For some list L of type List〈t〉 and a function f : t → t ′. . .

List comprehension:
[f (x) | x ← L]

Function:
map : (t → t ′)→ (List〈t〉 → List〈t ′〉)

Examples

map(add1, [1, 2, 3]) = [2, 3, 4]

map(uppercase, ["a", "b", "c"]) = ["A", "B", "C"]

map(ascii, [’a’, ’b’, ’c’]) = [97, 98, 99]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 15 / 22

List Comprehensions Working With Lists

join

For some list of lists L′ of type List〈List〈t〉〉. . .

List comprehension:
???

Function:
join : List〈List〈t〉〉 → List〈t〉

Examples

join
([

[1, 2, 3]
])

= [1, 2, 3]

join
([

[1], [2, 3]
])

= [1, 2, 3]

join
([

[[1]], [[2]]
])

=
[
[1], [2]

]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 16 / 22

List Comprehensions Working With Lists

join

For some list of lists L′ of type List〈List〈t〉〉. . .

Set notation: ⋃
L∈L′

L

Function:
join : List〈List〈t〉〉 → List〈t〉

Examples

join
([

[1, 2, 3]
])

= [1, 2, 3]

join
([

[1], [2, 3]
])

= [1, 2, 3]

join
([

[[1]], [[2]]
])

=
[
[1], [2]

]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 16 / 22

List Comprehensions Properties

Random Facts — 1/3

For some list L. . .

List comprehensions:
join([L | ∅]) = L

Functions:
join(unit(L)) = L

Definition

join ◦ unit = id

Example

join(unit([1, 2, 3])) = join(
[
[1, 2, 3]

]
) = [1, 2, 3]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 17 / 22

List Comprehensions Properties

Random Facts — 2/3

For some list L. . .

List comprehensions:

join
([

[x | ∅] | x ← L
])

= L

Functions:
join(map(unit, L)) = L

Definition

join ◦map(unit) = id

Example

join(map(unit, [1, 2, 3])) = join
([

[1], [2], [3]
])

= [1, 2, 3]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 18 / 22

List Comprehensions Properties

Random Facts — 3/3

For some list-of-lists-of-lists L′′. . .

List comprehensions:

join
(
[join(L′) | L′ ← L′′]

)
= join(join(L′′))

Functions:
join(map(join, L′′)) = join(join(L′′))

Definition

join ◦map(join) = join ◦ join

Example

join
(
join

([[
[1]
]
,
[
[2]
]]))

= join
([

[1], [2]
])

= [1, 2]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 19 / 22

List Comprehensions Properties

Random Facts — 3/3

For some list-of-lists-of-lists L′′. . .

List comprehensions:

join
(
[join(L′) | L′ ← L′′]

)
= join(join(L′′))

Functions:
join(map(join, L′′)) = join(join(L′′))

Definition

join ◦map(join) = join ◦ join

Example

join
(
map

(
join,

[[
[1]
]
,
[
[2]
]]))

= join
([
join

([
[1]
])

, join
([

[2]
])])

= join
([

[1], [2]
])

= [1, 2]

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 19 / 22

Monads

Our biggest mistake: using the scary term “monad” rather than
“warm fuzzy thing”. (Simon Peyton Jones)

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 20 / 22

Monads Definition

What The Hell Are Monads?

Definition

A monad is an operator on types, M〈t〉 (like List〈t〉), together with three
functions:

unit : t → M〈t〉
map : (t → t ′)→ (M〈t〉 → M〈t ′〉)
join : M〈M〈t〉〉 → M〈t〉

such that these functions obey the three monadic laws—the composition
properties we just saw.

A few other restrictions on unit, map, and join. . .

But they’re essentially “how it works for lists”

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 21 / 22

Monads Summary

In Conclusion

Monads are warm fuzzy things

They compose in certain ways that turn out to be convenient

Which is really the whole point. . .

Many things are monads:

Lists
Arrays
Exceptions
Parsers
Continuations
. . .

Math is hard. Let’s go shopping!

Alex Vondrak (ajvondrak@csupomona.edu) What The Hell Are Monads? January 28, 2011 22 / 22

	Introduction
	Overview
	Motivation
	Outline

	List Comprehensions
	Notation
	Working With Lists
	Properties

	Monads
	Definition
	Summary

