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Introduction Overview

“Mo-what?”

Tried doing this in a half-hour CS 664 talk

Reviews were fairly unanimous:
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Introduction Overview

Intended Audience

“Monads? Those functional programming thingies for PhDs?”
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Introduction Overview

Reality

Never heard of monads

Heard even less about functional programming

And what the hell is category theory, anyway?
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Introduction Motivation

Why Do We Care?
Functional Programming

Haskell: the poster-child for monads

Purely functional = No side-effects

Why functional programming matters

Variables don’t change unexpectedly
Functions always compute the same result
Major source of bugs is eliminated
Order of execution doesn’t matter—easier to reason about
Easier for compiler to reason about, too

Not going to sell you on functional programming with one slide,
but. . .
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Introduction Motivation

Why Do We Care?
Monads

“What are the advantages of monads?”
Nothing
Zilch
∅
Absolutely 0

Monads are not a language feature, they’re a structure

Some languages are explicit about their monads

public interface Monad { ... }

Certain data types are monads

class Foo implements Monad { ... }

Utilities can work on monads in general

bar(Monad m1 , Monad m2) { ... }
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Introduction Motivation

Why Do We Care?

“Because it’s cool.”
–Hologram from Invader Zim explaining why Martians decided to turn

their planet into a giant spaceship
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Introduction Outline

Outline

Comprehending Monads—Philip Wadler

How are monads defined?

Less time for how are monads used. . .
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List Comprehensions
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List Comprehensions Notation

Set-Builder Notation

How many of you remember CS 130?

{ p | q1 ∧ q2 . . . }

set

expression

“such that”

qualifier 1

“and”

qualifier 2 etc.

set
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List Comprehensions Notation

Set-Builder Notation

Examples

{x | x ∈ {1, 2, 3}}
= {1, 2, 3}

{x + 1 | x ∈ {1, 2, 3}}
= {2, 3, 4}

{x + y | x ∈ {1, 2, 3} ∧ y ∈ {10, 20}}
= {1 + 10, 1 + 20, 2 + 10, 2 + 20, 3 + 10, 3 + 20}
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List Comprehensions Notation

List Comprehensions

[ p | q1 ; q2 . . . ]

list

expression

“such that”

qualifier 1

qualifier composition

qualifier 2 etc.

list

Difference: qualifiers are all of the form x ← L

In Python: [p for x in L]

In C#: from x in L select p
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List Comprehensions Notation

Lists

Ordered sequence of elements

Elements all have the same type

Doesn’t matter what that type is

Examples (Types)

[1, 2, 3] : List〈int〉
["a", "b", "c"] : List〈string〉

[[1], [2, 3]] : List〈List〈int〉〉
[1, "a", [3]] : 7

Rest of this talk = “stuff”
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List Comprehensions Working With Lists

unit

For some item x of type t. . .

List comprehension:
[x | ∅]

Function:
unit : t → List〈t〉

Examples

unit(5) = [5]

unit("a") = ["a"]

unit(unit(10)) = [[10]]
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List Comprehensions Working With Lists

map

For some list L of type List〈t〉 and a function f : t → t ′. . .

List comprehension:
[f (x) | x ← L]

Function:
map : (t → t ′)× List〈t〉 → List〈t ′〉

Examples

map(add1, [1, 2, 3]) = [2, 3, 4]

map(uppercase, ["a", "b", "c"]) = ["A", "B", "C"]

map(ascii, [’a’, ’b’, ’c’]) = [97, 98, 99]
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List Comprehensions Working With Lists

join

For some list of lists L′ of type List〈List〈t〉〉. . .

List comprehension:
???

Function:
join : List〈List〈t〉〉 → List〈t〉

Examples

join
([

[1, 2, 3]
])

= [1, 2, 3]

join
([

[1], [2, 3]
])

= [1, 2, 3]

join
([

[[1]], [[2]]
])

=
[
[1], [2]

]
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List Comprehensions Working With Lists

join

For some list of lists L′ of type List〈List〈t〉〉. . .

Set notation: ⋃
L∈L′

L

Function:
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Examples
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List Comprehensions Properties

Random Facts — 1/3

For some list L. . .

List comprehensions:
join([L | ∅]) = L

Functions:
join(unit(L)) = L

Definition

join ◦ unit = id

Example

join(unit([1, 2, 3])) = join(
[
[1, 2, 3]

]
) = [1, 2, 3]
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List Comprehensions Properties

Random Facts — 2/3

For some list L. . .

List comprehensions:

join
([

[x | ∅] | x ← L
])

= L

Functions:
join(map(unit, L)) = L

Definition

join ◦map(unit) = id

Example

join(map(unit, [1, 2, 3])) = join
([

[1], [2], [3]
])

= [1, 2, 3]
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List Comprehensions Properties

Random Facts — 3/3

For some list-of-lists-of-lists L′′. . .

List comprehensions:

join
(
[join(L′) | L′ ← L′′]

)
= join(join(L′′))

Functions:
join(map(join, L′′)) = join(join(L′′))

Definition

join ◦map(join) = join ◦ join

Example

join
(
join

([[
[1]
]
,
[
[2]
]]))

= join
([

[1], [2]
])

= [1, 2]
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List Comprehensions Properties
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Functions:
join(map(join, L′′)) = join(join(L′′))

Definition

join ◦map(join) = join ◦ join

Example

join
(
map

(
join,

[[
[1]
]
,
[
[2]
]]))

= join
([
join

([
[1]
])

, join
([

[2]
])])

= join
([

[1], [2]
])

= [1, 2]
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Monads

Our biggest mistake: using the scary term “monad” rather than
“warm fuzzy thing”. (Simon Peyton Jones)
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Monads Definition

What The Hell Are Monads?

Definition

A monad is an operator on types, M〈t〉 (like List〈t〉), together with three
functions:

unit : t → M〈t〉
map : (t → t ′)→ (M〈t〉 → M〈t ′〉)
join : M〈M〈t〉〉 → M〈t〉

such that these functions obey the three monadic laws—the composition
properties we just saw.

A few other restrictions on unit, map, and join. . .

But they’re essentially “how it works for lists”
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Monads Summary

In Conclusion

Monads are warm fuzzy things

They compose in certain ways that turn out to be convenient

Which is really the whole point. . .

Many things are monads:

Lists
Arrays
Exceptions
Parsers
Continuations
. . .

Math is hard. Let’s go shopping!
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