
Randomized Software Testing

Alex Vondrak

ajvondrak@csupomona.edu

April 25, 2012

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 1 / 24



Introduction

1 Introduction
Motivation
QuickCheck Background

2 Using QuickCheck
Basics
Conditional Properties
Collecting Statistics
Generating Random Data

3 Summary

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 2 / 24



Introduction Motivation

Software Quality

Can be measured along two major axes:

Correctness

Efficiency

But what does it mean to be correct?
1 Specification

I When does a test pass or fail?
I Formal specification: difficult to do for the whole system
I Informal specification: vague and difficult to verify

2 Validation
I Did a test pass or fail?
I Formal validation: proofs of correctness (still difficult)
I Informal validation: try a lot of test cases

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 3 / 24



Introduction Motivation

Software Quality

Can be measured along two major axes:

Correctness

Efficiency

But what does it mean to be correct?
1 Specification

I When does a test pass or fail?
I Formal specification: difficult to do for the whole system
I Informal specification: vague and difficult to verify

2 Validation
I Did a test pass or fail?
I Formal validation: proofs of correctness (still difficult)
I Informal validation: try a lot of test cases

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 3 / 24



Introduction Motivation

Test Cases

Easier to validate with test cases. . .

. . . But, they’re inherently existential (∃)

Useful properties are usually universal (∀)

Example

Type signatures are universal properties:

int sqrt(int x) { ... }

∀x ∈ Z,
√
x

?
∈ Z

X 4 ∈ Z,
√

4 = 2 ∈ Z
X 9 ∈ Z,

√
9 = 3 ∈ Z

7 8 ∈ Z,
√

8 ≈ 2.83 /∈ Z

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 4 / 24



Introduction Motivation

Test Cases
Where Do They Come From?

Unit testing

Idea: Specify single cases by hand
Pro: Makes sure known edge cases won’t break code again
Con: Not very general

Automatically generate “good” test data

Idea: Discover what data follows each control-flow path
Pro: In the best case, exhaustive
Con: Usually too complex to do in general

Randomly generate data

Idea: Try a lot of cases, see if any fail
Pro: Automatic, yet simple
Con: Will data be “random enough”?

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 5 / 24



Introduction QuickCheck Background

QuickCheck

Homepage: www.cse.chalmers.se/~rjmh/QuickCheck/

A randomized specification-based testing tool
I By handling validation, specification is much easier
I Formal specification needn’t be complete, since we aren’t fully proving

its correctness

Written in Haskell (haskell.org)
I Write properties as actual code—executable specifications
I Aims to be small, simple, and lightweight
I Ports to other languages exist (see

en.wikipedia.org/wiki/Quickcheck)

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 6 / 24

www.cse.chalmers.se/~rjmh/QuickCheck/
haskell.org
en.wikipedia.org/wiki/Quickcheck


Using QuickCheck

1 Introduction
Motivation
QuickCheck Background

2 Using QuickCheck
Basics
Conditional Properties
Collecting Statistics
Generating Random Data

3 Summary

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 7 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

The reverse function takes a list of integers and returns a list of integers.
If the list is empty, its reverse is the empty list.
Otherwise, append the 1st item to the end of the remaining items reversed.

Example

reverse [1,2,3] == ...

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

If the list is empty, its reverse is the empty list.
Otherwise, append the 1st item to the end of the remaining items reversed.

Example

reverse [1,2,3] == ...

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

Otherwise, append the 1st item to the end of the remaining items reversed.

Example

reverse [1,2,3] == ...

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == ...

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == reverse [2,3] ++ [1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == (reverse [3] ++ [2]) ++ [1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == ((reverse [] ++ [3]) ++ [2]) ++ [1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == (([] ++ [3]) ++ [2]) ++ [1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == ([3] ++ [2]) ++ [1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == [3,2] ++ [1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

A Simple Haskell Function

Suppose we want to test a list-reversing function in Haskell

Definition

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Example

reverse [1,2,3] == [3,2,1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 8 / 24



Using QuickCheck Basics

Properties

In QuickCheck, properties are written as Haskell functions

In their simplest form, they return booleans
I “Did the test condition pass?”

Example (prop_reverseSingleton)

Observe that

∀ x :: Int, reverse [x] == [x] should be True

So, we write

prop_reverseSingleton :: Int -> Bool

prop_reverseSingleton x =

reverse [x] == [x]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 9 / 24



Using QuickCheck Basics

Properties

Inputs are considered to be universally quantified over their types

Thus, writing QuickCheck properties is like writing a formal spec

Example (prop_reverseReverse)

Observe that

∀ xs :: [Int], reverse (reverse xs) == xs should be True

So, we write

prop_reverseReverse :: [Int] -> Bool

prop_reverseReverse xs =

reverse (reverse xs) == xs

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 10 / 24



Using QuickCheck Basics

Properties

Properties can be defined for multiple inputs

In Haskell, the syntax looks like “in1 -> in2 -> out”

Example (prop_reverseAppended)

prop_reverseAppended :: [Int] -> [Int] -> Bool

prop_reverseAppended xs ys =

reverse (xs ++ ys) = reverse ys ++ reverse xs

For instance,

reverse ([1,2] ++ [3,4])

== reverse [1,2,3,4]

== [4,3,2,1]

== [4,3] ++ [2,1]

== reverse [3,4] ++ reverse [1,2]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 11 / 24



Using QuickCheck Basics

Verifying Properties

Instead of proving ∀, we show ∃ for a large number of cases

By default, 100 random tests are generated

Can use quickCheck function at Haskell prompt

Example (Running QuickCheck)

Main > quickCheck prop_reverseAppended

OK: passed 100 tests.

Not much to look at when property passes. . .

What if code is buggy?

What if property is wrong?

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 12 / 24



Using QuickCheck Basics

Verifying Properties

Typo In Property

prop_reverseAppended xs ys =

reverse (xs ++ ys) = reverse xs ++ reverse ys

Example

Main > quickCheck prop_reverseAppended

Falsifiable , after 1 tests:

[2]

[-2,1]

That is,
reverse ([2] ++ [-2,1]) != reverse [2] ++ reverse [-2,1]

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 13 / 24



Using QuickCheck Conditional Properties

Implication

Many properties are conditional

A =⇒ B: “If A is true, then B must be true”

Example

Suppose we define insort :: Int -> [Int] -> [Int]:

insort x xs inserts x into xs in order (xs must stay sorted)

Define the predicate

sorted :: [Int] -> Bool

sorted [] = True

sorted [x] = True

sorted (x1:x2:xs) = x1 <= x2 && sorted (x2:xs)

Then,
∀ x :: Int, xs :: [Int], sorted xs =⇒ sorted (insort x xs)

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 14 / 24



Using QuickCheck Conditional Properties

Implications in Properties

QuickCheck defines an infix ==> operator

Only count test case if antecedent is True

Otherwise, regenerate the test data

Example (prop_insortStaysSorted)

prop_insortStaysSorted :: Int -> [Int] -> Property

prop_insortStaysSorted x xs =

sorted xs ==> sorted (insort x xs)

Property is a new return type for this “retrying” behavior

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 15 / 24



Using QuickCheck Conditional Properties

Generating Matching Tests

What about “dumb” antecedents?
I Always False
I Rarely True—e.g., bothEvenAndPrime

Don’t want to get stuck regenerating

Impose a limit of 1000 “do-overs”

Example

Main > quickCheck prop_insortStaysSorted

Arguments exhausted after 97 tests.

Random lists are rarely ordered

Is passing 97 tests enough?

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 16 / 24



Using QuickCheck Collecting Statistics

Monitoring Test Cases

97 tests may pass. . .

. . . But is the data well-distributed?

Impossible to select uniformly randomly from infinite sets
I Z
I Arbitrary lists
I All binary trees
I . . .

Need to know what sort of data gets generated
I Specifically, what gets through to the right-hand side of ==>?

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 17 / 24



Using QuickCheck Collecting Statistics

Monitoring Test Cases
Trivial Data

Random data may contain duplicates

Some data is so simple that it’s hardly worth considering

Example (trivial)

insort x [] == [x] is trivially sorted, so. . .

prop_insortStaysSorted :: Int -> [Int] -> Property

prop_insortStaysSorted x xs =

sorted xs ==>

trivial (null xs) (sorted (insort x xs))

Main > quickCheck prop_insortStaysSorted

OK , passed 100 tests (43% trivial).

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 18 / 24



Using QuickCheck Collecting Statistics

Monitoring Test Cases
Details

trivial is just binary—“trivial” or “non-trivial”

What about whole distribution of data? (Over what variable?)

Example (collect)

prop_insortStaysSorted :: Int -> [Int] -> Property

prop_insortStaysSorted x xs =

sorted xs ==>

collect (length xs) (sorted (insort x xs))

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 19 / 24



Using QuickCheck Collecting Statistics

Monitoring Test Cases
Details

trivial is just binary—“trivial” or “non-trivial”

What about whole distribution of data? (Over what variable?)

Example (collect)

Main > quickCheck prop_insortStaysSorted

OK , passed 100 tests.

49% 0.

32% 1.

12% 2.

4% 3.

2% 4.

1% 5.

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 19 / 24



Using QuickCheck Collecting Statistics

Monitoring Test Cases
Generalizing

trivial and collect are doing the same sort of things
I Keep track of a property
I Return test result unchanged—can compose observations

Example (classify)

prop_insortStaysSorted :: Int -> [Int] -> Property

prop_insortStaysSorted x xs =

sorted xs ==>

collect (length xs) $

classify (sorted (x:xs)) "at-head" $

classify (sorted (xs++[x])) "at-tail" $

sorted (insort x xs)

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 20 / 24



Using QuickCheck Collecting Statistics

Monitoring Test Cases
Generalizing

trivial and collect are doing the same sort of things
I Keep track of a property
I Return test result unchanged—can compose observations

Example (classify)

Main > quickCheck prop_insortStaysSorted

OK , passed 100 tests.

58% 0, at -head , at -tail.

22% 1, at -tail.

13% 2.

4% 1, at-head.

3% 3.

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 20 / 24



Using QuickCheck Generating Random Data

Fixing the Distribution
Tools

==> can skew data, so try generating desired data
I . . . But automation is complicated

Instead, QuickCheck gives us easy random selection functions
I choose (a,b)—random number between a & b
I oneof xs—pick item with uniform probability
I frequency [(w1, x1), ...]—pick item with weighted probability

Main “interface”: the arbitrary function
I Tied to Haskell’s type system (beyond our scope)
I Generates arbitrary data for a given type
I Instances already defined for built-ins: integers, booleans, lists,

functions, etc.

sized—gives access to a size parameter
I Parameter is an upper bound on datum’s size (e.g., list length)
I Automatically increases as more tests pass
I Thus, if there are failures, they happen on smaller data

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 21 / 24



Using QuickCheck Generating Random Data

Fixing the Distribution
In Action

Needn’t define a whole new data type to randomly generate

Can just define a generator function

Example (forAll)

Suppose we have an sortedList generator, defined roughly like

sortedList = sort (arbitrary :: [Int])

forAll supplies the generator’s data to the test

Thus, we’re guaranteed to generate 100 sorted lists

prop_insortStaysSorted :: Int -> Property

prop_insortStaysSorted x =

forAll sortedList (\xs -> sorted (insort x xs))

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 22 / 24



Summary

1 Introduction
Motivation
QuickCheck Background

2 Using QuickCheck
Basics
Conditional Properties
Collecting Statistics
Generating Random Data

3 Summary

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 23 / 24



Summary Conclusions

What We’ve Learned

Automatically generating test data is hard

QuickCheck combines formal specs with random tests

Can still get effective coverage from random tests
I Formal properties force programmers to think about code. . .
I . . . But, needn’t fully specify program, which is tedious
I The more random tests we run, the more we’re sure our code—on

average—won’t fail (like a Monte Carlo approximation of π)

Randomized testing has been used effectively
I Simple ideas port to many languages
I Testing gets done faster or more completely in limited time
I E.g., Ericsson team discovered bugs in already well-tested product

F See “Testing Telecoms Software with Quviq QuickCheck” by Arts,
Hughes, Johansson, and Wiger

Alex Vondrak (ajvondrak@csupomona.edu) Randomized Software Testing April 25, 2012 24 / 24


	Introduction
	Motivation
	QuickCheck Background

	Using QuickCheck
	Basics
	Conditional Properties
	Collecting Statistics
	Generating Random Data

	Summary

